Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Algorithmic Discrimination and Responsibility: Selected Examples from the United States of America and South America

  • Conference paper
  • First Online:
Applied Informatics (ICAI 2019)

Abstract

This paper discusses examples and activities that promote consumer protection through adapting of non-discriminatory algorithms. The casual observer of data from smartphones to artificial intelligence believes in technological determinism. To them, data reveal real trends with neutral decision-makers that are not prejudiced. However, machine learning technologies are created by people. Therefore, creator biases can appear in decisions based on algorithms used for surveillance, social profiling, surveillance, and business intelligence.

This paper adapts Lawrence Lessig’s framework (laws, markets, codes, and social norms). It highlights cases in the USA and South America where algorithms discriminated and how statutes tried to mitigate the negative consequences. Global companies such as Facebook and Amazon are among those discussed in the case studies. In the case of Ecuador, the algorithms and the lack of protection of personal data for citizens are not regulated or protected in the treatment of information that arises in social networks used by public and private institutions. Consequently, individual rights are not strictly shielded by national and international laws and or through regulations of telecommunications and digital networks. In the USA, a proposed bill, the “Algorithmic Accountability Act” would require large companies to audit their machine-learning powered automated systems such as facial recognition or ad targeting algorithm for bias. The Federal Trade Commission (FTC) will create rules for evaluating automated systems, while companies would evaluate the algorithms powering these tools for bias or discrimination, including threats to consumer privacy or security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Diakopoulos, N.: Algorithmic accountability. Digit. Journalism 3(3), 398–415 (2015)

    Article  Google Scholar 

  2. Cepal. Data, algorithms, and policies the redefinition of the digital world (2018). https://repositorio.cepal.org/bitstream/handle/11362/43477/7/S1800053_es.pdf

  3. Katyal, N.K.: Digital architecture as crime control. Yale Law J. 112(8), 2261–2289 (2003)

    Article  Google Scholar 

  4. Lessig. L. The Code 2.0. (2009). www.articaonline.com/wp-content/uploads/…/Elcódigo-2.0-Lawrence-Lessig.pdf. Accessed 17 June 2019

  5. Angwin, J. Make Algorithms Accountable. The New York Times, August 2016. http://www.nytimes.com/2016/08/01/opinion/make-algorithms-accountable.html. Accessed 16 June 2019

  6. Ortiz Freuler, J., Iglesias, C.: Algorithms and artificial intelligence in Latin America. In: A Study of Implementation by Governments in Argentina and Uruguay. Foundation World Wide Web, pp. 9–167 (2018). https://webfoundation.org/docs/2018/09/WF_AI-inLA_Report_Spanish_Screen_AW.pdf. Accessed 17 June 2019

  7. Silva, S., Kenney, M.: Algorithms, platforms, and ethnic bias: an integrative essay. Phylon 55(1 & 2), 9–37 (2018)

    Google Scholar 

  8. European Convention on Human Rights, Article 14 (2010). https://www.echr.coe.int/Documents/Convention_ENG.pdf. Accessed 17 June 2019

  9. Asprino, M., Márquez-Domínguez, C., Ramos-Gil, Y.: Human rights and the concept of dignity in the digital society. In: Rocha Á., Guarda T. (eds) Proceedings of the International Conference on Information Technology & Systems (COISINT 2019) (2019)

    Google Scholar 

  10. Kim, W., Choi, B.-J., Hong, E.-K., Kim, S.-K., Lee, D.: A taxonomy of dirty data. Data Min. Knowl. Discov. 7(1), 81–99 (2003). https://doi.org/10.1023/A:1021564703268

    Article  MathSciNet  Google Scholar 

  11. Richardson, R., Schultz, J.M., Crawford, K.: Dirty Data, Bad Predictions: How Civil Rights Violations Impact Police Data, Predictive Policing Systems, and Justice, New York University Law Review, vol. 192, pp. 204–217 (2019)

    Google Scholar 

  12. Brantingham, P. J. The Logic of Data Bias and Its Impact on Place-Based Predictive Policing, 15 OHIO ST. J. CRIM L. 473, 485 (2018). https://www.booker.senate.gov/?p=press_release&id=903

  13. Mayson, S.G.: Bias in, bias out. Yale Law J. 128(8), 2122–2473 (2019)

    Google Scholar 

  14. Winner, L.: Do artifacts have politics? Daedalus, 109, 121–136 (1980)

    Google Scholar 

  15. Noble, D.: Forces of Production: A Social History of Industrial Automation. Routledge, New York (2017)

    Google Scholar 

  16. Seaver, N.: Algorithmic Recommendations and Synaptic Functions, Limn 1(2) (2012). https://escholarship.org/uc/item/7g48p7pb

  17. Piskorski, M.J.: A Social Strategy: How We Profit from Social Media. Princeton University Press (2014). http://www.jstor.org/stable/j.ctt6wpzxq

  18. Azavea: Next City Coverage of First Comprehensive NIJ Study on Predictive Policing Highlights HunchLab. December 17th, 2014. Accessed 19 June 2019

    Google Scholar 

  19. Cheetham, R.: Why We Sold HunchLab. 23rd January 2019. https://www.azavea.com/blog/2019/01/23/why-we-sold-hunchlab/. Accessed 17 June 2019

  20. PredPol (2019). https://www.predpol.com/. Accessed 17 June 2019

  21. Palantir Law Enforcement (2019). https://www.palantir.com/solutions/law-enforcement/. Accessed 17 June 2019

  22. Ley Orgánica de Telecomunicaciones. Quito. Asamblea Nacional (2015). https://www.telecomunicaciones.gob.ec/…/Ley-Orgánica-deTelecomunicaciones.pdf. Accessed 16 June 2019

  23. Organic Law of Communication. Quito. Asamblea Nacional (2013). www.arcotel.gob.ec/wpcontent/uploads/…/2013/07/ley_organica_comunicacion.pdf. Accessed 17 June 2019

  24. Yogyakarta Principles plus 10. http://yogyakartaprinciples.org/wpcontent/uploads/2017/11/A5_yogyakartaWEB-2.pdf. Accessed 20 June 2019

  25. Lessig, L.: Code and Other Laws of Cyberspace. Basic Books, New York (1999)

    Google Scholar 

  26. Armacost, B.E.: Organizational culture and police misconduct. George Wash. Law Rev. 62(1), 1–68 (2009). http://www.jstor.org/stable/40379719

    MathSciNet  Google Scholar 

  27. Levinson-Waldman, R.: What the Government Does with Americans’ Data. The Brennan Center for Justice (2013). https://www.brennancenter.org/publication/whatgovernment-does-americans-data. Accessed 17 June 2019

  28. Booker, C., Wyden, R., Clarke, Y.D.: Introduce Bill Requiring Companies to Target Bias in Corporate Algorithms, 10 April 2019. https://www.booker.senate.gov/?p=press_release&id=903. Accessed 17 June 2019

  29. Scott, R.E.: The limits of behavioral theories of law and social norms. Va. Law Rev. 86(8), 1603–1647 (2000). Symposium: The Legal Construction of Norms

    Article  Google Scholar 

  30. Ellickson, R.C.: A critique of economic and sociological theories of social control. J. Legal Stud. 16, 67 (1987)

    Article  Google Scholar 

  31. Bishop, D.: Legal and extra-legal barriers to delinquency: a panel analysis. Criminology 22, 403 (1984)

    Article  Google Scholar 

  32. Jacob, H.: Deterrent effects of formal and informal sanctions. Policy Implementation 69 (1980)

    Google Scholar 

  33. Tyler, T.R.: Why People Obey the Law 42 (1990)

    Google Scholar 

  34. Wrong, D.H.: The oversocialized conception of man in modem sociology. Am. Soc. Rev. 26, 183–191 (1961)

    Article  Google Scholar 

  35. Robinson, P., Darley, J.” The utility of desert. Nw. U. L. Rev. 91, 453, 468-77 (1997)

    Google Scholar 

  36. García, J.F.: The protection of personal data. Right Ecuador.com (2011). https://www.derechoecuador.com/la-proteccion-de-datos-personales

  37. Mitchell, W.J.: City of Bits: Space, Place, and the Infobahn. MIT Press, Cambridge (1996)

    Google Scholar 

  38. Goodman, B.: A step towards accountable algorithms: algorithmic discrimination and the european union general data protection. In: 29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain (2016)

    Google Scholar 

  39. Ministerio de Telecomunicaciones y de la Sociedad de la Información. https://www.telecomunicaciones.gob.ec/91-de-ecuatorianos-utiliza-las-redes-socialesen-su-telefono-inteligente/. Accessed 17 June 2019

  40. Moraff, C.: The Problem with Some of the Most Powerful Numbers in Modern Policing, 15 December 2014. https://nextcity.org/daily/entry/predictive-policing-crime-statsdata-measure. Accessed 15 June 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musonda Kapatamoyo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kapatamoyo, M., Ramos-Gil, Y.T., Márquez Dominiguez, C. (2019). Algorithmic Discrimination and Responsibility: Selected Examples from the United States of America and South America. In: Florez, H., Leon, M., Diaz-Nafria, J., Belli, S. (eds) Applied Informatics. ICAI 2019. Communications in Computer and Information Science, vol 1051. Springer, Cham. https://doi.org/10.1007/978-3-030-32475-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32475-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32474-2

  • Online ISBN: 978-3-030-32475-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics