Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Predicting Stock Prices Using Dynamic LSTM Models

  • Conference paper
  • First Online:
Applied Informatics (ICAI 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1051))

Included in the following conference series:

Abstract

Predicting stock prices accurately is a key goal of investors in the stock market. Unfortunately, stock prices are constantly changing and affected by many factors, making the process of predicting them a challenging task. This paper describes a method to build models for predicting stock prices using long short-term memory network (LSTM). The LSTM-based model, which we call dynamic LSTM, is initially built and continuously retrained using newly augmented data to predict future stock prices. We evaluate the proposed method using data sets of four stocks. The results show that the proposed method outperforms others in predicting stock prices based on different performance metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Malkiel, B.G., Fama, E.F.: Efficient capital markets: a review of theory and empirical work. J. Finan. 25(2), 383–417 (1970)

    Article  Google Scholar 

  2. Miao, K., Chen, F., Zhao, Z.-G.: Stock price forecast based on bacterial colony RBF neural network. J. Qingdao Univ. (Nat. Sci. Ed.) 2, 011 (2007)

    Google Scholar 

  3. Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. J. Econ. 31, 307–327 (1986)

    Article  MathSciNet  Google Scholar 

  4. Box, G.E., Jenkins, G., Reinsel, G., Ljung, G.: Time Series Analysis: Forecasting and Control. John Wiley & Sons, Hoboken (2015)

    MATH  Google Scholar 

  5. Hadavandi, E., Ghanbari, A., Abbasian-Naghneh, S.: Developing an evolutionary neural network model for stock index forecasting. In: Huang, D.-S., McGinnity, M., Heutte, L., Zhang, X.-P. (eds.) ICIC 2010. CCIS, vol. 93, pp. 407–415. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14831-6_54

    Chapter  Google Scholar 

  6. Jain, S., Dr. Roopam, G., Dr. Asmita A.M., Stock price prediction on daily stock data. Int. J. Neural Netw. Adv. Appl., 5 (2018)

    Google Scholar 

  7. Göçken, M., Özçalıcı, M., Boru, A., Dosdoğru, A.T.: Integrating metaheuristics and artificial neural networks for improved stock price prediction. Expert Syst. Appl. 44, 320–331 (2016)

    Article  Google Scholar 

  8. Kim, K.-J., Han, I.: Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index. Expert Syst. Appl. 19, 125–132 (2000)

    Article  Google Scholar 

  9. Lendasse, A., de Bodt, E., Wertz, V., Verleysen, M.: Non-linear financial time series forecasting - application to the Bel 20 stock market index. Eur. J. Econ. Soc. Syst. 14(1), 81–91 (2000)

    Article  Google Scholar 

  10. Patel, J., Shah, S., Thakkar, P., Kotecha, K.: Predicting stock market index using fusion of machine learning techniques. Expert Syst. Appl. 42, 2162–2172 (2014)

    Article  Google Scholar 

  11. Ticknor, J.L.: A bayesian regularized artificial neural network for stock market forecasting. Expert Syst. Appl. 40, 5501–5506 (2013)

    Article  Google Scholar 

  12. Chen, K., Zhou, Y., Dai, F.: A LSTM-based method for stock returns prediction: a case study of China stock market, In: 2015 IEEE International Conference on Big Data (Big Data) (2015)

    Google Scholar 

  13. Nelson, D.M.Q., Pereira, A.C.M., Oliveira, R.A.d.: Stock market’s price movement prediction with LSTM neural networks. In: 2017 International Joint Conference on Neural Networks (IJCNN) (2017)

    Google Scholar 

  14. Chiang, W.-C., Enke, D., Wu, T., Wang, R.: An adaptive stock index trading decision support system. Expert Syst. Appl. 59, 195–207 (2016)

    Article  Google Scholar 

  15. Baek, Y., Kim, H.Y.: ModAugNet: a new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module. Expert Syst. Appl. 113, 457–480 (2018)

    Article  Google Scholar 

  16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  17. LeCunn, Y., Bengio, Y.: Convolutional networks for images, speech, and time-series, The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge (1995)

    Google Scholar 

  18. Selvin, S.: Stock price prediction using LSTM, RNN and CNN-sliding window model, In: International Conference on Advances in Computing, Communications and Informatics (ICACCI) (2017)

    Google Scholar 

  19. Svozil, D., Kvasnicka, V., Pospichal, J.: Introduction to multi-layer feed-forward neural networks. Chemom. Intell. Lab. Syst. 39, 43–62 (1997)

    Article  Google Scholar 

  20. Lipton, Z.C., Kale, D.C., Elkan, C., Wetzel, R.: Learning to diagnose with LSTM recurrent neural networks, In: ICLR 2016 (2016)

    Google Scholar 

  21. Sak, H., Senior, A., Beaufays, F.: Long short-term memory recurrent neural network architectures for large scale acoustic modeling, In: INTERSPEECH 2014 (2014)

    Google Scholar 

  22. Sundermeyer, M., Schlüter, R., Ney, H.: LSTM neural networks for language modeling, In: INTERSPEECH 2012 (2012)

    Google Scholar 

  23. Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28, 2222–2232 (2017)

    Article  MathSciNet  Google Scholar 

  24. Finance, Y.: Yahoo! Finance. https://finance.yahoo.com/

  25. Nasdaq, “Nasdaq”. https://www.nasdaq.com/

  26. Keras, “Keras”. https://pypi.org/project/Keras/

  27. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: The 3rd International Conference for Learning Representations, San Diego (2014)

    Google Scholar 

  28. Kara, Y., Acar Boyacioglu, M., Baykan, Ö.K.: Predicting direction of stock price index movement using artificial neural networks and support vector machines: the sample of the Istanbul stock exchange. Expert syst. Appl. 38, 5311–5319 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc Huu Dat Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, D.H.D., Tran, L.P., Nguyen, V. (2019). Predicting Stock Prices Using Dynamic LSTM Models. In: Florez, H., Leon, M., Diaz-Nafria, J., Belli, S. (eds) Applied Informatics. ICAI 2019. Communications in Computer and Information Science, vol 1051. Springer, Cham. https://doi.org/10.1007/978-3-030-32475-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32475-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32474-2

  • Online ISBN: 978-3-030-32475-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics