Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

RDF Multi-query Optimization Algorithm Based on Triple Pattern Reordering

  • Conference paper
  • First Online:
Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1075))

  • 1372 Accesses

Abstract

Under the premise of accelerating statistics by RDF storage index and narrowing the scope of semantic pruning, the distance-based triple pattern reordering algorithm is used to obtain the optimal connection order of a single query. After converting each query to a left deep tree, the left deep tree identification algorithm is used to find the common subtree and evaluate its cost. Establish materialized view and corresponding update replacement mechanism for valuable common subtrees. While optimizing a single query to a certain extent, it improves the possibility of the existence of common result sets among multiple queries. By making full use of query sharing, the overall execution cost of query set can be reduced. The experimental results show that the algorithm of this paper has better query performance than the existing query schemes, whether it is on single query or multiple query. Especially in the case that the RDF data set is large in scale, the number of queries in the query set is large, and the query statement is more complicated, the multi-query optimization method of this paper is better.

F. Xu—The main research areas are semantic data management and query optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, D.J., Marcus, A., Madden, S.R., et al.: Scalable semantic web data management using vertical partitioning. In: Proceedings of the 33rd International Conference on Very Large Data Bases, Vienna, Austria, pp. 411–422. ACM, New York (2007)

    Google Scholar 

  2. Bernstcin, A., Kiefer, C., Stocker, M.: OptARQ: a SPARQL optimization approach based on triple pattern selectivity estimation. Department of Informatics, University of Zurich (2007)

    Google Scholar 

  3. Lv, B., Du, X., Wang, Y., et al.: SPARQL query optimization based on property correlations. J. Comput. Res. Dev. 46(S2), 494–500 (2009)

    Google Scholar 

  4. Ye, Y., Ouyang, D.: Optimize SPARQL by combining semantic reduction and selectivity estimation. Aata Electronica Sinica 38(5), 1205–1210 (2010)

    Google Scholar 

  5. Liu, C., Qu, J., Qi, G., Wang, H., Yu, Y.: Hadoop SPARQL: a Hadoop-based engine for multiple SPARQL query answering. In: ESWC (Satellite Events), pp. 474–479 (2012)

    Google Scholar 

  6. Anyanwu, K.: A vision for SPARQL multi-query optimization on MapReduce. In: 2013 IEEE 29th International Conference on IEEE Data Engineering Workshops (ICDEW), pp. 25–26 (2013)

    Google Scholar 

  7. Le, W., Kementsietsidis, A., Duan, S., et al.: Scalable multi-query optimization for SPARQL. In: ICDE, pp. 666–677 (2012)

    Google Scholar 

  8. Li, Y.: Research on sub-row query algorithm based on single neighborhood. Yanshan University, Qinhuangdao City (2016)

    Google Scholar 

  9. Zhang, C., Zhang, X.: Subgraph isomorphism of uncertain attribute graphs and its decision algorithm. Comput. Sci. 40(6), 242–246 (2013)

    Google Scholar 

  10. Ren, X., Wang, J.: Exploiting vertex relationships in speeding up subgraph isomorphism over large graphs. PVLDB 8(5), 617–628 (2015)

    Google Scholar 

  11. Kalayci, E.G., Kalayci, T.E., Birant, D.: An ant colony optimization approach for optimizing SPARQL queries by reordering triple patterns. Inf. Syst. 50, 51–68 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

I am very grateful to my instructors Jinguang Gu, Fangfang Xu and Haidong Fu for their help and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangfang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, M., Xu, F., Fu, H. (2020). RDF Multi-query Optimization Algorithm Based on Triple Pattern Reordering. In: Liu, Y., Wang, L., Zhao, L., Yu, Z. (eds) Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery. ICNC-FSKD 2019. Advances in Intelligent Systems and Computing, vol 1075. Springer, Cham. https://doi.org/10.1007/978-3-030-32591-6_26

Download citation

Publish with us

Policies and ethics