Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Road State Information Platform Based on Multi-sensors and Bigdata Analysis

  • Conference paper
  • First Online:
Advances on Broad-Band Wireless Computing, Communication and Applications (BWCCA 2019)

Abstract

In this paper, in order to keep safe and secure driving, a new generation wide area road surface state information platform based on crowd sensing and V2X Technologies is introduced. In crowd sensing, various environmental sensors including accelerator, gyro sensor, infrared temperature sensor, quasi electrical static sensor, camera and GPS are integrated to precisely detect the various road surface states and determine the dangerous locations on GIS. Those road information are transmitted the neighbor vehicles and road side server in realtime using V2X communication network. In V2X communication on the actual road, both the length of communication distance and the total size of data transmission must be maximized at the same time when vehicle are running on the road. The conventional single wireless communication such as Wi-Fi, IEEE802.11p, LPWA, cannot satisfy those conditions at the same time. In order to resolve such problems, N-wavelength cognitive wireless communication method is newly introduced in our research. Multiple next generation wireless LANS including IEEE802.11ac/ad/ah/in addition to the current popular LANs with different wavelengths are integrated to organize a cognitive wireless communication. The best link of the cognitive wireless is determined by SDN. Driver can receive the road surface status information from the vehicle in opposite direction or road side server and eventually pay attentions to his/her driving before encountering the danger location. This technology can also apply for automatic driving car.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A 2016 Aging Society White Paper. http://www8.cao.go.jp/kourei/whitepaper/w-014/zenbun/s1_1_1.html

  2. A 2016 Declining Birthrate White Paper. http://www8.cao.go.jp/shoushi/shoushika/whitepaper/measures/english/w-2016/index.html

  3. Ito, K., Hirakawa, G., Shibata, Y.: Experimentation of V2X communication in real environment for road alert information sharing system. In: IEEE AINA 2015, pp. 711–716, March 2015

    Google Scholar 

  4. Otomo, M., Sato, G., Shibata, Y.: In-vehicle cloudlet computing based delay tolerant network protocol for disaster information system. In: Advances on Broad-Band Wireless Computing, Communication and Application Applications. Lecture Notes on Data Engineering and Communications Technologies, vol. 2, pp. 255–266, October 2016

    Google Scholar 

  5. Hirakawa, G., Uchida, N., Arai, Y., Shibata, Y.: Application of DTN to the vehicle sensor platform CoMoSe. In: WAINA 2015, pp. 24–27, March 2015

    Google Scholar 

  6. Kitada, S., Sato, G., Shibata, Y.: A DTN based multi-hop network for disaster information transmission by smart devices. In: Advances on Broad-Band Wireless Computing, Communication and Application Applications. Lecture Notes on Data Engineering and Communications Technologies, vol. 2, pp. 601–611, October 2016

    Google Scholar 

  7. Goto, T., Sato, G., Hashimoto, K., Shibata, Y.: Disaster information sharing system considering communication status and elapsed time. In: IWDENS 2017, March 2017

    Google Scholar 

Download references

Acknowledgement

The research was supported by Strategic Information and Communications R&D Promotion Program Grant Number 181502003 by Ministry of Affairs and Communication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Shibata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shibata, Y., Sato, G., Uchida, N. (2020). Road State Information Platform Based on Multi-sensors and Bigdata Analysis. In: Barolli, L., Hellinckx, P., Enokido, T. (eds) Advances on Broad-Band Wireless Computing, Communication and Applications. BWCCA 2019. Lecture Notes in Networks and Systems, vol 97. Springer, Cham. https://doi.org/10.1007/978-3-030-33506-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33506-9_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33505-2

  • Online ISBN: 978-3-030-33506-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics