Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

New Internal Clustering Evaluation Index Based on Line Segments

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2019 (IDEAL 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11871))

  • 1719 Accesses

Abstract

This work proposes a new internal clustering evaluation index, based on line segments as central elements of the clusters. The data dispersion is calculated as the average of the distances of the cluster to the respective line segment. It also defines a new measure of distance based on a line segment that connects the centroids of the clusters, from which an approximation of the edges of their geometries is obtained. The proposed index is validated with a series of experiments on 10 artificial data sets that are generated with different cluster characteristics, such as size, shape, noise and dimensionality, and on 8 real data sets. In these experiments, the performance of the new index is compared with 12 representative indices of the literature, surpassing all of them. These results allow to conclude the effectiveness of the proposal and shows the appropriateness of including geometric properties in the definition of internal indexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  2. Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J.M., Perona, I.: An extensive comparative study of cluster validity indices. Pattern Recogn 46(1), 243–256 (2013)

    Article  Google Scholar 

  3. Rojas-Thomas, J.C., Santos, M., Mora, M.: New internal index for clustering validation based on graphs. Expert Syst. Appl. 86, 334–349 (2017)

    Article  Google Scholar 

  4. Brun, M., et al.: Model-based evaluation of clustering validation measures. Pattern Recogn. 40(3), 807–824 (2007)

    Article  Google Scholar 

  5. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. Theory Methods 3(1), 1–27 (1974)

    Article  MathSciNet  Google Scholar 

  6. Maulik, U., Bandyopadhyay, S.: Performance evaluation of some clustering algorithms and validity indices. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1650–1654 (2002)

    Article  Google Scholar 

  7. Davies, D., Bouldin, D.: A cluster separation measure. IEEE PAMI 1(2), 224–227 (1979)

    Google Scholar 

  8. Xie, S.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 8, 841–847 (1991)

    Article  Google Scholar 

  9. Dunn, J.: Well separated clusters and optimal fuzzy partitions. J. Cybern 4(1), 95–104 (1974)

    Article  MathSciNet  Google Scholar 

  10. Chou, C-H., Mu-Chun S., Lai, E.: A new cluster validity measure for clusters with different densities. In: IASTED International Conference on Intelligent Systems and Control (2003)

    Google Scholar 

  11. Hubert, L.J., Levin, J.R.: A general statistical framework for assessing categorical clustering in free recall. Psychol. Bull. 83(6), 1072 (1976)

    Article  Google Scholar 

  12. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  13. Baker, F.B., Hubert, L.J.: Measuring the power of hierarchical cluster analysis. J. Am. Stat. Assoc. 70, 31–38 (1975)

    Article  Google Scholar 

  14. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Clustering validity checking methods: part II. ACM Sigmod Rec. 31(3), 19–27 (2002)

    Article  Google Scholar 

  15. Thomas, J.C.R.: A new clustering algorithm based on k-means using a line segment as prototype. In: San Martin, C., Kim, S.-W. (eds.) CIARP 2011. LNCS, vol. 7042, pp. 638–645. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25085-9_76

    Chapter  Google Scholar 

  16. Dua, D. Graff, C.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2019). http://archive.ics.uci.edu/ml

  17. Rojas-Thomas, J.C., Santos M., Mora, M., Duro, N.: Performance analysis of clustering internal validation indexes with asymmetric clusters. IEEE Lat. Am. Trans. (5) (2019, in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matilde Santos Peñas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thomas, J.C.R., Peñas, M.S. (2019). New Internal Clustering Evaluation Index Based on Line Segments. In: Yin, H., Camacho, D., Tino, P., Tallón-Ballesteros, A., Menezes, R., Allmendinger, R. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2019. IDEAL 2019. Lecture Notes in Computer Science(), vol 11871. Springer, Cham. https://doi.org/10.1007/978-3-030-33607-3_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33607-3_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33606-6

  • Online ISBN: 978-3-030-33607-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics