Abstract
In this paper, we describe AppxDL, an algorithm for approximate classification of workloads of running processes in big data environments via deep learning (deep neural networks). The Deep Neural Network is trained with some workloads which belong to known categories (e.g., compiler, file compressor, etc...). Its purpose is to extract the type of workload from the executions of reference programs, so that a Neural Model of the workloads can be learned. When the learning phase is completed, the Deep Neural Network is available as Neural Model of the known workloads. We describe the AppxDL algorithm and we report and discuss some significant results we have achieved with it.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Van Do, T.: Comparison of allocation schemes for virtual machines in energy-aware server farms. Comput. J. 54(11), 1790–1797 (2011)
Islam, S., Keung, J., Lee, K., Liu, A.: Empirical prediction models for adaptive resource provisioning in the cloud. Future Generation Comp. Syst. 28(1), 155–162 (2012)
Garg, S.K., Toosi, A.N., Gopalaiyengar, S.K., Buyya, R.: SLA-based virtual machine management for heterogeneous workloads in a cloud datacenter. J. Netw. Comput. Appl. 45, 108–120 (2014)
Akindele, A.B., Samuel, A.A.: Predicting cloud resource provisioning using machine learning techniques. In: IEEE CCECE, pp. 1–4 (2013)
Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat. 37(6), 1554–1563 (1966)
Deng, Y., Shen, S., Huang, Z., Iosup, A., Lau, R.W.H.: Dynamic resource management in cloud-based distributed virtual environments. In: ACM Multimedia, pp. 1209–1212 (2014)
DiFranzo, D., Graves, A.: A farm in every window: a study into the incentives for participation in the windowfarm virtual community. In: WebSci 2011, p. 14 (2011)
Kousiouris, G., Menychtas, A., Kyriazis, D., Gogouvitis, S., Varvarigou, T.: Dynamic, behavioral-based estimation of resource provisioning based on high-level application terms in cloud platforms. Future Gener. Comput. Syst. 32, 27–40 (2014)
Amiri, M., Feizi-Derakhshi, M.R., Mohammad-Khanli, L.: IDS fitted Q improvement using fuzzy approach for resource provisioning in cloud. J. Intell. Fuzzy Syst. 32(1), 229–240 (2017)
Hou, H.S., Tretter, D.R., Vogel, M.J.: Interesting properties of thediscrete cosine transform. J. Vis. Commun. Image Represent. 3(1), 73–83 (1992)
Chang, Y., Chang, R., Chuang, F.: A predictive method for workload forecasting in the cloud environment. In: Proceedings of Advanced Technologies, Embedded and Multimedia for Human-Centric Computing, pp. 577–585 (2014)
Chen, Z., Zhu, Y., Di, Y., Feng, S.: Self-Adaptive prediction of cloud resource demands using ensemble model and subtractive-fuzzy clustering based fuzzy neural network. Comput. Intell. Neurosci. 2015, 17:1–17:14 (2015)
Ramezani, F., Naderpour, M.: A fuzzy virtual machine workload prediction method for cloud environments. In: FUZZ-IEEE, pp. 1–6 (2017)
G. Bruder, F. Steinicke, A. Nchter, Poster: Immersive point cloud virtual environments. In: Proceedings of 3DUI 2014, pp. 161–162. Publisher, Location (2010)
Chuang, I.-H., Tsai, Y.-T., Horng, M.-F., Kuo, Y.-H., Hsu, J.-P.: A GA-based approach for resource consolidation of virtual machines in clouds. In: Nguyen, N.T., Attachoo, B., Trawiński, B., Somboonviwat, K. (eds.) ACIIDS 2014. LNCS (LNAI), vol. 8397, pp. 342–351. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05476-6_35
Bleikertz, S., Vogel, C., Gro, T.: Cloud radar: near real-time detection of security failures in dynamic virtualized infrastructures. In: ACSAC, pp. 26–35 (2014)
Hsiao, S.-W., Chen, Y.-N., Sun, Y.S., Chen, M.C.: Combining dynamic passive analysis and active fingerprinting for effective bot malware detection in virtualized environments. In: Lopez, J., Huang, X., Sandhu, R. (eds.) NSS 2013. LNCS, vol. 7873, pp. 699–706. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38631-2_59
Vandromme, N., et al.: Life cycle assessment of videoconferencing with call management servers relying on virtualization, In: ICT4S 2014 (2014)
Standard Performance Evaluation Corporation. http://www.spec.org/cpu2006/CINT2006/
Virtualbox API. http://www.virtualbox.org/sdkref/index.html
Virtualbox. http://www.virtualbox.org/manual
Braun, P., Cameron, J.J., Cuzzocrea, A., Jiang, F., Leung, C.K.: Effectively and efficiently mining frequent patterns from dense graph streams on disk. Procedia Comput. Sci. 35, 338–347 (2014)
Wu, Z., Yin, W., Cao, J., Xu, G., Cuzzocrea, A.: Community detection in multi-relational social networks. In: International Conference on Web Information Systems Engineering, pp. 43–56 (2013)
Cuzzocrea, A., Bertino, E.: Privacy preserving OLAP over distributed XML data: A theoretically-sound secure-multiparty-computation approach. J. Comput. Syst. Sci. 77(6), 965–987 (2011)
Acknowledgments
This project is partially supported by NSERC (Canada) and University of Manitoba.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Cuzzocrea, A., Mumolo, E., Leung, C.K., Grasso, G.M. (2019). An Innovative Deep-Learning Algorithm for Supporting the Approximate Classification of Workloads in Big Data Environments. In: Yin, H., Camacho, D., Tino, P., Tallón-Ballesteros, A., Menezes, R., Allmendinger, R. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2019. IDEAL 2019. Lecture Notes in Computer Science(), vol 11872. Springer, Cham. https://doi.org/10.1007/978-3-030-33617-2_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-33617-2_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33616-5
Online ISBN: 978-3-030-33617-2
eBook Packages: Computer ScienceComputer Science (R0)