Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Innovative Deep-Learning Algorithm for Supporting the Approximate Classification of Workloads in Big Data Environments

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2019 (IDEAL 2019)

Abstract

In this paper, we describe AppxDL, an algorithm for approximate classification of workloads of running processes in big data environments via deep learning (deep neural networks). The Deep Neural Network is trained with some workloads which belong to known categories (e.g., compiler, file compressor, etc...). Its purpose is to extract the type of workload from the executions of reference programs, so that a Neural Model of the workloads can be learned. When the learning phase is completed, the Deep Neural Network is available as Neural Model of the known workloads. We describe the AppxDL algorithm and we report and discuss some significant results we have achieved with it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Van Do, T.: Comparison of allocation schemes for virtual machines in energy-aware server farms. Comput. J. 54(11), 1790–1797 (2011)

    Article  Google Scholar 

  2. Islam, S., Keung, J., Lee, K., Liu, A.: Empirical prediction models for adaptive resource provisioning in the cloud. Future Generation Comp. Syst. 28(1), 155–162 (2012)

    Article  Google Scholar 

  3. Garg, S.K., Toosi, A.N., Gopalaiyengar, S.K., Buyya, R.: SLA-based virtual machine management for heterogeneous workloads in a cloud datacenter. J. Netw. Comput. Appl. 45, 108–120 (2014)

    Article  Google Scholar 

  4. Akindele, A.B., Samuel, A.A.: Predicting cloud resource provisioning using machine learning techniques. In: IEEE CCECE, pp. 1–4 (2013)

    Google Scholar 

  5. Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat. 37(6), 1554–1563 (1966)

    Article  MathSciNet  Google Scholar 

  6. Deng, Y., Shen, S., Huang, Z., Iosup, A., Lau, R.W.H.: Dynamic resource management in cloud-based distributed virtual environments. In: ACM Multimedia, pp. 1209–1212 (2014)

    Google Scholar 

  7. DiFranzo, D., Graves, A.: A farm in every window: a study into the incentives for participation in the windowfarm virtual community. In: WebSci 2011, p. 14 (2011)

    Google Scholar 

  8. Kousiouris, G., Menychtas, A., Kyriazis, D., Gogouvitis, S., Varvarigou, T.: Dynamic, behavioral-based estimation of resource provisioning based on high-level application terms in cloud platforms. Future Gener. Comput. Syst. 32, 27–40 (2014)

    Article  Google Scholar 

  9. Amiri, M., Feizi-Derakhshi, M.R., Mohammad-Khanli, L.: IDS fitted Q improvement using fuzzy approach for resource provisioning in cloud. J. Intell. Fuzzy Syst. 32(1), 229–240 (2017)

    Article  Google Scholar 

  10. Hou, H.S., Tretter, D.R., Vogel, M.J.: Interesting properties of thediscrete cosine transform. J. Vis. Commun. Image Represent. 3(1), 73–83 (1992)

    Article  Google Scholar 

  11. Chang, Y., Chang, R., Chuang, F.: A predictive method for workload forecasting in the cloud environment. In: Proceedings of Advanced Technologies, Embedded and Multimedia for Human-Centric Computing, pp. 577–585 (2014)

    Google Scholar 

  12. Chen, Z., Zhu, Y., Di, Y., Feng, S.: Self-Adaptive prediction of cloud resource demands using ensemble model and subtractive-fuzzy clustering based fuzzy neural network. Comput. Intell. Neurosci. 2015, 17:1–17:14 (2015)

    Google Scholar 

  13. Ramezani, F., Naderpour, M.: A fuzzy virtual machine workload prediction method for cloud environments. In: FUZZ-IEEE, pp. 1–6 (2017)

    Google Scholar 

  14. G. Bruder, F. Steinicke, A. Nchter, Poster: Immersive point cloud virtual environments. In: Proceedings of 3DUI 2014, pp. 161–162. Publisher, Location (2010)

    Google Scholar 

  15. Chuang, I.-H., Tsai, Y.-T., Horng, M.-F., Kuo, Y.-H., Hsu, J.-P.: A GA-based approach for resource consolidation of virtual machines in clouds. In: Nguyen, N.T., Attachoo, B., Trawiński, B., Somboonviwat, K. (eds.) ACIIDS 2014. LNCS (LNAI), vol. 8397, pp. 342–351. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05476-6_35

    Chapter  Google Scholar 

  16. Bleikertz, S., Vogel, C., Gro, T.: Cloud radar: near real-time detection of security failures in dynamic virtualized infrastructures. In: ACSAC, pp. 26–35 (2014)

    Google Scholar 

  17. Hsiao, S.-W., Chen, Y.-N., Sun, Y.S., Chen, M.C.: Combining dynamic passive analysis and active fingerprinting for effective bot malware detection in virtualized environments. In: Lopez, J., Huang, X., Sandhu, R. (eds.) NSS 2013. LNCS, vol. 7873, pp. 699–706. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38631-2_59

    Chapter  Google Scholar 

  18. Vandromme, N., et al.: Life cycle assessment of videoconferencing with call management servers relying on virtualization, In: ICT4S 2014 (2014)

    Google Scholar 

  19. Standard Performance Evaluation Corporation. http://www.spec.org/cpu2006/CINT2006/

  20. Virtualbox API. http://www.virtualbox.org/sdkref/index.html

  21. Virtualbox. http://www.virtualbox.org/manual

  22. SOAP. http://www.w3.org/tr/soap

  23. WSDL. http://www.w3.org/tr/wsdl20

  24. Braun, P., Cameron, J.J., Cuzzocrea, A., Jiang, F., Leung, C.K.: Effectively and efficiently mining frequent patterns from dense graph streams on disk. Procedia Comput. Sci. 35, 338–347 (2014)

    Article  Google Scholar 

  25. Wu, Z., Yin, W., Cao, J., Xu, G., Cuzzocrea, A.: Community detection in multi-relational social networks. In: International Conference on Web Information Systems Engineering, pp. 43–56 (2013)

    Google Scholar 

  26. Cuzzocrea, A., Bertino, E.: Privacy preserving OLAP over distributed XML data: A theoretically-sound secure-multiparty-computation approach. J. Comput. Syst. Sci. 77(6), 965–987 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This project is partially supported by NSERC (Canada) and University of Manitoba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Cuzzocrea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cuzzocrea, A., Mumolo, E., Leung, C.K., Grasso, G.M. (2019). An Innovative Deep-Learning Algorithm for Supporting the Approximate Classification of Workloads in Big Data Environments. In: Yin, H., Camacho, D., Tino, P., Tallón-Ballesteros, A., Menezes, R., Allmendinger, R. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2019. IDEAL 2019. Lecture Notes in Computer Science(), vol 11872. Springer, Cham. https://doi.org/10.1007/978-3-030-33617-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33617-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33616-5

  • Online ISBN: 978-3-030-33617-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics