Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Bounded Region Optimization of PID Gains for Grid Forming Inverters with Genetic Algorithms

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2019)

Abstract

Tuning conventional controllers could be a difficult task when experimental methodologies are implemented. Moreover, nowadays, Microgrids (MGs) require specific operation responses that could be achieved if the conventional controllers are correctly tuned. As a result, an optimization methodology that gets the correct parameters of conventional controller can improve the performance of the (MGs). This paper proposes the tuning of the conventional controllers used in a Grid Forming Inverters (GFMI) two voltage PID control loops, two current PID control loops, and the frequency PID controller. In a conventional control architecture of a GFMI. In GFMIs that act as voltage sources within a MG system, an incorrect tuning would harm the regulation of the dispatched voltage and frequency values to the linked electrical loads. Previously, optimization methods have been used for tuning conventional controllers, however, this is usually done in a grid-connected configuration. This work delimits the possible gain values to a desired controlled system response, by then optimizing over the controller requirements using genetic algorithms. In addition, a complete study of the tuning process under different genetic algorithm parameters (population and mutation) is presented.

This research is a product of the Project 266632 “Laboratorio Binacional para la Gestión Inteligente de la Sustentabilidad Energética y la Formación Tecnológica” (“Bi-National Laboratory on Smart Sustainable Energy Management and Technology Training”), funded by the CONACYT (Consejo Nacional de Ciencia y Tecnología) SENER (Secretaría de Energía) Fund for Energy Sustainability (Agreement S0019201401).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Askarzadeh, A.: A memory-based genetic algorithm for optimization of power generation in a microgrid. IEEE Trans. Sustain. Energy 9(3), 1081–1089 (2018). https://doi.org/10.1109/TSTE.2017.2765483. https://ieeexplore.ieee.org/document/8078257/

    Article  Google Scholar 

  2. Balaguer, I.J., Lei, Q., Yang, S., Supatti, U., Peng, F.Z.: Control for grid-connected and intentional islanding operations of distributed power generation. IEEE Trans. Industr. Electron. 58(1), 147–157 (2011). https://doi.org/10.1109/TIE.2010.2049709

    Article  Google Scholar 

  3. Cruz, P.P.: Inteligencia Artificial. Con Aplicaciones a la Ingeniería, p. 378

    Google Scholar 

  4. Hooshyar, A., Iravani, R.: Microgrid protection. Proc. IEEE 105(7), 1332–1353 (2017). https://doi.org/10.1109/JPROC.2017.2669342

    Article  Google Scholar 

  5. Khamis, A., Ghani, M.R.A., Kim, G.C., Kamarudin, M.N., Shahrieel, M., Aras, M.: Voltage and frequency control of microgrid systems with demand response, p. 7

    Google Scholar 

  6. Li, Z.W., Zang, C.Z., Zeng, P., Yu, H.B., Li, H.P.: The controller parameters optimization for droop controlled distributed generators in microgrid. Appl. Mech. Mater. 672–674, 1329–1335 (2014). https://doi.org/10.4028/www.scientific.net/AMM.672-674.1329. https://www.scientific.net/AMM.672-674.1329

    Article  Google Scholar 

  7. Liserre, M., Dell’Aquila, A., Blaabjerg, F.: Genetic algorithm-based design of the active damping for an LCL-filter three-phase active rectifier. IEEE Trans. Power Electron. 19(1), 76–86 (2004). https://doi.org/10.1109/TPEL.2003.820540. http://ieeexplore.ieee.org/document/1262055/

    Article  Google Scholar 

  8. Rocabert, J., Luna, A., Blaabjerg, F., Rodríguez, P.: Control of power converters in AC microgrids. IEEE Trans. Power Electron. 27(11), 4734–4749 (2012). https://doi.org/10.1109/TPEL.2012.2199334. http://ieeexplore.ieee.org/document/6200347/

    Article  Google Scholar 

  9. Sadasivarao, M.V., Chidambaram, M.: PID controller tuning of cascade control systems using genetic algorithm. J. Indian Inst. Sci. 86, 343–354 (2006)

    Google Scholar 

  10. Srinivas, M., Patnaik, L.: Genetic algorithms: a survey. Computer 27(6), 17–26 (1994). https://doi.org/10.1109/2.294849. http://ieeexplore.ieee.org/document/294849/

    Article  Google Scholar 

  11. Tang, K., Man, K., Kwong, S., He, Q.: Genetic algorithms and their applications. IEEE Signal Process. Mag. 13(6), 22–37 (1996). https://doi.org/10.1109/79.543973. http://ieeexplore.ieee.org/document/543973/

    Article  Google Scholar 

  12. Vandoorn, T.L., Meersman, B., De Kooning, J.D., Vandevelde, L.: Transition from islanded to grid-connected mode of microgrids with voltage-based droop control. IEEE Trans. Power Syst. 28(3), 2545–2553 (2013). https://doi.org/10.1109/TPWRS.2012.2226481. http://ieeexplore.ieee.org/document/6476047/

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Roberto López Gutiérrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López Gutiérrez, J.R., Ponce Cruz, P., Molina Gutiérrez, A. (2019). Bounded Region Optimization of PID Gains for Grid Forming Inverters with Genetic Algorithms. In: Martínez-Villaseñor, L., Batyrshin, I., Marín-Hernández, A. (eds) Advances in Soft Computing. MICAI 2019. Lecture Notes in Computer Science(), vol 11835. Springer, Cham. https://doi.org/10.1007/978-3-030-33749-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33749-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33748-3

  • Online ISBN: 978-3-030-33749-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics