Abstract
Tuning conventional controllers could be a difficult task when experimental methodologies are implemented. Moreover, nowadays, Microgrids (MGs) require specific operation responses that could be achieved if the conventional controllers are correctly tuned. As a result, an optimization methodology that gets the correct parameters of conventional controller can improve the performance of the (MGs). This paper proposes the tuning of the conventional controllers used in a Grid Forming Inverters (GFMI) two voltage PID control loops, two current PID control loops, and the frequency PID controller. In a conventional control architecture of a GFMI. In GFMIs that act as voltage sources within a MG system, an incorrect tuning would harm the regulation of the dispatched voltage and frequency values to the linked electrical loads. Previously, optimization methods have been used for tuning conventional controllers, however, this is usually done in a grid-connected configuration. This work delimits the possible gain values to a desired controlled system response, by then optimizing over the controller requirements using genetic algorithms. In addition, a complete study of the tuning process under different genetic algorithm parameters (population and mutation) is presented.
This research is a product of the Project 266632 “Laboratorio Binacional para la Gestión Inteligente de la Sustentabilidad Energética y la Formación Tecnológica” (“Bi-National Laboratory on Smart Sustainable Energy Management and Technology Training”), funded by the CONACYT (Consejo Nacional de Ciencia y Tecnología) SENER (Secretaría de Energía) Fund for Energy Sustainability (Agreement S0019201401).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Askarzadeh, A.: A memory-based genetic algorithm for optimization of power generation in a microgrid. IEEE Trans. Sustain. Energy 9(3), 1081–1089 (2018). https://doi.org/10.1109/TSTE.2017.2765483. https://ieeexplore.ieee.org/document/8078257/
Balaguer, I.J., Lei, Q., Yang, S., Supatti, U., Peng, F.Z.: Control for grid-connected and intentional islanding operations of distributed power generation. IEEE Trans. Industr. Electron. 58(1), 147–157 (2011). https://doi.org/10.1109/TIE.2010.2049709
Cruz, P.P.: Inteligencia Artificial. Con Aplicaciones a la Ingeniería, p. 378
Hooshyar, A., Iravani, R.: Microgrid protection. Proc. IEEE 105(7), 1332–1353 (2017). https://doi.org/10.1109/JPROC.2017.2669342
Khamis, A., Ghani, M.R.A., Kim, G.C., Kamarudin, M.N., Shahrieel, M., Aras, M.: Voltage and frequency control of microgrid systems with demand response, p. 7
Li, Z.W., Zang, C.Z., Zeng, P., Yu, H.B., Li, H.P.: The controller parameters optimization for droop controlled distributed generators in microgrid. Appl. Mech. Mater. 672–674, 1329–1335 (2014). https://doi.org/10.4028/www.scientific.net/AMM.672-674.1329. https://www.scientific.net/AMM.672-674.1329
Liserre, M., Dell’Aquila, A., Blaabjerg, F.: Genetic algorithm-based design of the active damping for an LCL-filter three-phase active rectifier. IEEE Trans. Power Electron. 19(1), 76–86 (2004). https://doi.org/10.1109/TPEL.2003.820540. http://ieeexplore.ieee.org/document/1262055/
Rocabert, J., Luna, A., Blaabjerg, F., Rodríguez, P.: Control of power converters in AC microgrids. IEEE Trans. Power Electron. 27(11), 4734–4749 (2012). https://doi.org/10.1109/TPEL.2012.2199334. http://ieeexplore.ieee.org/document/6200347/
Sadasivarao, M.V., Chidambaram, M.: PID controller tuning of cascade control systems using genetic algorithm. J. Indian Inst. Sci. 86, 343–354 (2006)
Srinivas, M., Patnaik, L.: Genetic algorithms: a survey. Computer 27(6), 17–26 (1994). https://doi.org/10.1109/2.294849. http://ieeexplore.ieee.org/document/294849/
Tang, K., Man, K., Kwong, S., He, Q.: Genetic algorithms and their applications. IEEE Signal Process. Mag. 13(6), 22–37 (1996). https://doi.org/10.1109/79.543973. http://ieeexplore.ieee.org/document/543973/
Vandoorn, T.L., Meersman, B., De Kooning, J.D., Vandevelde, L.: Transition from islanded to grid-connected mode of microgrids with voltage-based droop control. IEEE Trans. Power Syst. 28(3), 2545–2553 (2013). https://doi.org/10.1109/TPWRS.2012.2226481. http://ieeexplore.ieee.org/document/6476047/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
López Gutiérrez, J.R., Ponce Cruz, P., Molina Gutiérrez, A. (2019). Bounded Region Optimization of PID Gains for Grid Forming Inverters with Genetic Algorithms. In: Martínez-Villaseñor, L., Batyrshin, I., Marín-Hernández, A. (eds) Advances in Soft Computing. MICAI 2019. Lecture Notes in Computer Science(), vol 11835. Springer, Cham. https://doi.org/10.1007/978-3-030-33749-0_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-33749-0_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33748-3
Online ISBN: 978-3-030-33749-0
eBook Packages: Computer ScienceComputer Science (R0)