Abstract
Generative Adversarial Network (GAN) has demonstrated great potentials in computer vision tasks such as image restoration. However, image restoration for specific scenarios, such as medical image enhancement is still facing challenge: How to ensure the visually plausible results while not containing hallucinated features that might jeopardize downstream tasks such as pathology identification? Here, we propose Task-GAN, a generalized model for medical reconstruction problem. A task-specific network that captures the diagnostic/pathology features, was added to couple the GAN based image reconstruction framework. Validated on multiple medical datasets, we demonstrated that the proposed method leads to improved deep learning based image reconstruction while preserving the detailed structure and diagnostic features.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)
Mardani, M., et al.: Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans. Med. Imaging 38(1), 167–179 (2019)
Seitzer, M., et al.: Adversarial and perceptual refinement for compressed sensing MRI reconstruction. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 232–240. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_27
Yang, G., et al.: DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2017)
Kang, E., et al.: A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med. Phys. 44(10), e360–e375 (2017)
Chen, K., et al.: Ultra-low-dose 18F-florbetaben amyloid PET imaging using deep learning with multi-contrast MRI inputs. Radiology. 290(3), 649–656 (2018)
Huang, R., et al.: Beyond face rotation: global and local perception GAN for photorealistic and identity preserving frontal view synthesis. In: ICCV (2017)
Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation. In: ICML (2018)
Isola, P., et al.: Image-to-image translation with conditional adversarial networks. In: NIPS (2016)
Salimans, T., et al.: Improved techniques for training GANs. In: NIPS (2016)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Zhu, J., et al.: Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593 (2017)
Warntjes, J.B.M., et al.: Rapid magnetic resonance quantification on the brain: optimization for clinical usage. Magn. Reson. Med. 60, 320–329 (2008)
Tanenbaum, L.N., et al.: Synthetic MRI for clinical neuroimaging: results of the Magnetic Resonance Image Compilation (MAGiC) prospective, multicenter, multireader trial. Am. J. Neuroradiol. 38, 1103–1110 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Ouyang, J., Wang, G., Gong, E., Chen, K., Pauly, J., Zaharchuk, G. (2019). Task-GAN: Improving Generative Adversarial Network for Image Reconstruction. In: Knoll, F., Maier, A., Rueckert, D., Ye, J. (eds) Machine Learning for Medical Image Reconstruction. MLMIR 2019. Lecture Notes in Computer Science(), vol 11905. Springer, Cham. https://doi.org/10.1007/978-3-030-33843-5_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-33843-5_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33842-8
Online ISBN: 978-3-030-33843-5
eBook Packages: Computer ScienceComputer Science (R0)