Abstract
In human-human interactions, individuals naturally achieve fluency by anticipating the partner’s actions. This predictive ability is largely lacking in collaborative robots, leading to inefficient human-robot interactions. Fluent meshing in human-robot collaboration requires the robot to make its intentions clear to its human collaborator. We propose a unified generative model of human reaching motions that allows the robot to (a) infer human intent, and then (b) plan its motion to be legible, or intent-expressive. We conducted a study on human reaching motion and constructed an elliptical motion model that is shown to yield a good fit to empirical data. In future studies, we plan to confirm the effectiveness of this model in predicting human intent and conveying robot intent for achieving fluency in human-robot handovers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
See Vicon Nexus Documentation at https://docs.vicon.com.
References
Tomasello, M., Carpenter, M., Call, J., Behne, T., Moll, H.: Behav. Brain Sci. 28(5), 675–691 (2005)
Dragan, A.D., Bauman, S., Forlizzi, J., Srinivasa, S.S.: In: Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction (ACM), pp. 51–58 (2015)
Cakmak, M., Srinivasa, S.S., Lee, M.K., Kiesler, S., Forlizzi, J.: In: Proceedings of the 6th International Conference on Human-robot Interaction. ACM, New York, NY, USA, , HRI 2011, pp. 489–496 (2011)
Beetz, M., Stulp, F., Esden-Tempski, P., Fedrizzi, A., Klank, U., Kresse, I., Maldonado, A., Ruiz, F.: Autonom. Robots 28(1), 21 (2009)
Dragan, A.D., Lee, K.C.T., Srinivasa, S.S.: In: 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 301–308 (2013)
Hoffman, G., Breazeal, C.: IEEE Trans. Robot. 23(5), 952 (2007)
Lasseter, J.: In: ACM Siggraph Computer Graphics, vol. 21, pp. 35–44. ACM (1987)
Flash, T., Hogan, N.: J. Neurosci. 5(7), 1688 (1985)
Argall, B.D., Chernova, S., Veloso, M., Browning, B.: Robot. Auton. Syst. 57(5), 469 (2009)
Abbeel, P., Ng, A.Y.: In: Proceedings of the Twenty-First International Conference ON Machine Learning, p. 1. ACM (2004)
Dragan, A.D., Gordon, G.J., Srinivasa, S.S.: In: Robotics Research, pp. 309–326. Springer (2017)
Sciutti, A., Sandini, G.: IEEE Trans. Neural Syst. Rehabil. Eng. 25(12), 2295 (2017)
Flash, T., Hogans, N.: J. Neurosci. 5, 1688 (1985)
Harris, C., Wolpert, D. M.: Signal-dependent noise determines motor planning. Nature 394(6695), 780 (1998)
Wu, G., van der Helm, F.C., et al.: J. Biomech. 38(5), 981 (2005)
Todorov, E., Jordan, M.: Nat. Neurosci. 5, 1226 (2002)
Morasso, P.: Exp. Brain Res. 42(2), 223 (1981)
Collewijn, H., Erkelens, C.J., Steinman, R.M.: J. Physiol. 404(1), 157 (1988)
Nurunnabi, A., Belton, D., West, G.: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Science, vol. I-3, pp. 269–274 (2012)
Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN: 0521540518
Ayoub, A.B.: Math. Mag. 66(5), 322 (1993)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Sheikholeslami, S., Lee, G., Hart, J.W., Srinivasa, S., Croft, E.A. (2020). A Study of Reaching Motions for Collaborative Human-Robot Interaction. In: Xiao, J., Kröger, T., Khatib, O. (eds) Proceedings of the 2018 International Symposium on Experimental Robotics. ISER 2018. Springer Proceedings in Advanced Robotics, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-33950-0_50
Download citation
DOI: https://doi.org/10.1007/978-3-030-33950-0_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33949-4
Online ISBN: 978-3-030-33950-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)