Abstract
A tri-trophic food chain model with strong allee effect in prey species considering the rate parameters to be time dependent has been analyzed in this article. The energy flow is from bottom level to higher trophic level. By utilizing the Mawhin’s coincidence degree theorem and then by constructing a suitable Lyapunov function it has been shown that the non-autonomous system has a globally attractive positive periodic solution if some sufficient conditions are satisfied. Finally, the paper ends with a conclusion.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Berryman, A.A.: The origins and evolutions of predator-prey theory. Ecology 73, 1530–1543 (1992)
Berec, L., Angulo, E., Courchamp, F.: Multiple Allee effects and population management. Trends Ecol. Evol. 22, 185–191 (2007)
Courchamp, F., Clutton-Brock, T., Grenfell, B.: Inverse dependence and the Allee effect. Trends Ecol. Evol. 14, 405–410 (1999)
Courchamp, F., Berec, L., Gascoigne, J.: Allee Effects in Ecology and Conservation. Oxford University Press, Oxford (2008)
Clark, C.W.: Mathematical Bioeconomic: The Optimal Management of Renewable Resources. Wiley, New York (1990)
Clark, C.W.: The Worldwide Crisis in Fisheries: Economic Models and Human Behavior. Cambridge University Press, Cambridge (2007)
Clutton-Brock, T.H., Gaynor, D., McIlrath, G.M., Maccoll, A.D.C., Kansky, R., Chadwick, P., Manser, M., Skinner, J.D., Brotherton, P.N.M.: Predation, group size and mortality in a cooperative mongoose, Suricata suricatta. J. Anim. Ecol. 68, 672–683 (1999)
Ding, X., Lu, C.: Existence of positive periodic solution for ratio-dependent n-species difference system. Appl. Math. Modell. 33, 2748–2756 (2009)
Gaines, R.E., Mawhin, J.L.: Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin (1977)
Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer Academic Publishers, Boston (1992)
Guo, H., Chen, X.: Existence and global attractivity of positive periodic solution for a Volterra model with mutual interference and Beddington-DeAngelis functional response. Appl. Math. Comput. 217, 5830–5837 (2011)
Huo, H.F., Li, W.T.: Existence of positive periodic solution of a neutral impulsive delay predator-prey system. Appl. Math. Comput. 184, 499–507 (2006)
Kuang, Y., Beretta, E.: Global qualitative analysis of a ratio-dependent predator-prey system. J. Math. Biol. 36, 389–406 (1998)
Liu, S., Beretta, E.: A stage-structured predator-prey model of Beddington-DeAngelis type. SIAM. J. Appl. Math. 66, 1101–1129 (2006)
Lotka, A.J.: Elements of Physical Biology. Williams and Wilkins, Baltimore (1925)
Murdoch, W.W., Oaten, A.: Predation and population stability. Adv. Ecol. Res. 9, 1–31 (1975)
Oaten, A., Murdoch, W.W.: Functional response and stability in predator-prey systems. Amer. Nar. 109, 289–298 (1975)
Stephens, P.A., Sutherland, W.J., Freckleton, R.P.: What is the Allee effect? Oikos 87, 185–190 (1999)
Sun, S.L., Chen, L.S.: Existence of positive periodic solution of an impulsive delay logistic model. Appl. Math. Comput. 184, 617–623 (2007)
Volterra, V.: Fluctuations in the abundance of species considered mathematically. Nature 118, 558–560 (1926)
van Voorn, G.A.K., Hemerik, L., Boer, M.P., Kooi, B.W.: Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect. Math. Biosci. 209, 451–469 (2007)
Wang, G., Liang, X.G., Wang, F.Z.: The competitive dynamics of populations subject to an Allee effect. Ecol. Model. 124, 183–192 (1991)
Wang, J., Shi, J., Wei, J.: Predator-prey system with strong Allee effect in prey. J. Math. Biol. 62, 291–331 (2011)
Wang, K., Zhu, Y.L.: Global attractivity of positive periodic solution for a Volterra model. Appl. Math. Comput. 203, 493–501 (2008)
Wang, M.H., Kot, M.: Speeds of invasion in a model with strong or weak Allee effects. Math. Biosci. 171, 83–97 (2001)
Xu, R.: Periodic solution for a three-species Lotka-Volterra food-chain model with time delays. Math. Comput. Modell. 40, 823–837 (2004)
Zhu, Y., Wang, K.: Existence and global attractivity of positive periodic solutions for a predator-prey model with modified Leslie-Gower Holling-type ii schemes. J. Math. Anal. Appl. 384, 400–408 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Roy, J., Alam, S. (2020). Study on Non-autonomous Version of a Food Chain Model with Strong Allee Effect in Prey Species. In: Castillo, O., Jana, D., Giri, D., Ahmed, A. (eds) Recent Advances in Intelligent Information Systems and Applied Mathematics. ICITAM 2019. Studies in Computational Intelligence, vol 863. Springer, Cham. https://doi.org/10.1007/978-3-030-34152-7_35
Download citation
DOI: https://doi.org/10.1007/978-3-030-34152-7_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34151-0
Online ISBN: 978-3-030-34152-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)