Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Study on Non-autonomous Version of a Food Chain Model with Strong Allee Effect in Prey Species

  • Conference paper
  • First Online:
Recent Advances in Intelligent Information Systems and Applied Mathematics (ICITAM 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 863))

  • 656 Accesses

Abstract

A tri-trophic food chain model with strong allee effect in prey species considering the rate parameters to be time dependent has been analyzed in this article. The energy flow is from bottom level to higher trophic level. By utilizing the Mawhin’s coincidence degree theorem and then by constructing a suitable Lyapunov function it has been shown that the non-autonomous system has a globally attractive positive periodic solution if some sufficient conditions are satisfied. Finally, the paper ends with a conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berryman, A.A.: The origins and evolutions of predator-prey theory. Ecology 73, 1530–1543 (1992)

    Article  Google Scholar 

  2. Berec, L., Angulo, E., Courchamp, F.: Multiple Allee effects and population management. Trends Ecol. Evol. 22, 185–191 (2007)

    Article  Google Scholar 

  3. Courchamp, F., Clutton-Brock, T., Grenfell, B.: Inverse dependence and the Allee effect. Trends Ecol. Evol. 14, 405–410 (1999)

    Article  Google Scholar 

  4. Courchamp, F., Berec, L., Gascoigne, J.: Allee Effects in Ecology and Conservation. Oxford University Press, Oxford (2008)

    Book  Google Scholar 

  5. Clark, C.W.: Mathematical Bioeconomic: The Optimal Management of Renewable Resources. Wiley, New York (1990)

    MATH  Google Scholar 

  6. Clark, C.W.: The Worldwide Crisis in Fisheries: Economic Models and Human Behavior. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  7. Clutton-Brock, T.H., Gaynor, D., McIlrath, G.M., Maccoll, A.D.C., Kansky, R., Chadwick, P., Manser, M., Skinner, J.D., Brotherton, P.N.M.: Predation, group size and mortality in a cooperative mongoose, Suricata suricatta. J. Anim. Ecol. 68, 672–683 (1999)

    Article  Google Scholar 

  8. Ding, X., Lu, C.: Existence of positive periodic solution for ratio-dependent n-species difference system. Appl. Math. Modell. 33, 2748–2756 (2009)

    Article  MathSciNet  Google Scholar 

  9. Gaines, R.E., Mawhin, J.L.: Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin (1977)

    Book  Google Scholar 

  10. Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer Academic Publishers, Boston (1992)

    Book  Google Scholar 

  11. Guo, H., Chen, X.: Existence and global attractivity of positive periodic solution for a Volterra model with mutual interference and Beddington-DeAngelis functional response. Appl. Math. Comput. 217, 5830–5837 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Huo, H.F., Li, W.T.: Existence of positive periodic solution of a neutral impulsive delay predator-prey system. Appl. Math. Comput. 184, 499–507 (2006)

    MATH  Google Scholar 

  13. Kuang, Y., Beretta, E.: Global qualitative analysis of a ratio-dependent predator-prey system. J. Math. Biol. 36, 389–406 (1998)

    Article  MathSciNet  Google Scholar 

  14. Liu, S., Beretta, E.: A stage-structured predator-prey model of Beddington-DeAngelis type. SIAM. J. Appl. Math. 66, 1101–1129 (2006)

    Article  MathSciNet  Google Scholar 

  15. Lotka, A.J.: Elements of Physical Biology. Williams and Wilkins, Baltimore (1925)

    MATH  Google Scholar 

  16. Murdoch, W.W., Oaten, A.: Predation and population stability. Adv. Ecol. Res. 9, 1–31 (1975)

    Article  Google Scholar 

  17. Oaten, A., Murdoch, W.W.: Functional response and stability in predator-prey systems. Amer. Nar. 109, 289–298 (1975)

    Google Scholar 

  18. Stephens, P.A., Sutherland, W.J., Freckleton, R.P.: What is the Allee effect? Oikos 87, 185–190 (1999)

    Article  Google Scholar 

  19. Sun, S.L., Chen, L.S.: Existence of positive periodic solution of an impulsive delay logistic model. Appl. Math. Comput. 184, 617–623 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Volterra, V.: Fluctuations in the abundance of species considered mathematically. Nature 118, 558–560 (1926)

    Article  Google Scholar 

  21. van Voorn, G.A.K., Hemerik, L., Boer, M.P., Kooi, B.W.: Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect. Math. Biosci. 209, 451–469 (2007)

    Article  MathSciNet  Google Scholar 

  22. Wang, G., Liang, X.G., Wang, F.Z.: The competitive dynamics of populations subject to an Allee effect. Ecol. Model. 124, 183–192 (1991)

    Article  Google Scholar 

  23. Wang, J., Shi, J., Wei, J.: Predator-prey system with strong Allee effect in prey. J. Math. Biol. 62, 291–331 (2011)

    Article  MathSciNet  Google Scholar 

  24. Wang, K., Zhu, Y.L.: Global attractivity of positive periodic solution for a Volterra model. Appl. Math. Comput. 203, 493–501 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Wang, M.H., Kot, M.: Speeds of invasion in a model with strong or weak Allee effects. Math. Biosci. 171, 83–97 (2001)

    Article  MathSciNet  Google Scholar 

  26. Xu, R.: Periodic solution for a three-species Lotka-Volterra food-chain model with time delays. Math. Comput. Modell. 40, 823–837 (2004)

    Article  MathSciNet  Google Scholar 

  27. Zhu, Y., Wang, K.: Existence and global attractivity of positive periodic solutions for a predator-prey model with modified Leslie-Gower Holling-type ii schemes. J. Math. Anal. Appl. 384, 400–408 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotirmoy Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roy, J., Alam, S. (2020). Study on Non-autonomous Version of a Food Chain Model with Strong Allee Effect in Prey Species. In: Castillo, O., Jana, D., Giri, D., Ahmed, A. (eds) Recent Advances in Intelligent Information Systems and Applied Mathematics. ICITAM 2019. Studies in Computational Intelligence, vol 863. Springer, Cham. https://doi.org/10.1007/978-3-030-34152-7_35

Download citation

Publish with us

Policies and ethics