Abstract
The aim of collaborative intrusion detection networks (CIDNs) is to provide better detection performance over a single IDS, through allowing IDS nodes to exchange data or information with each other. Nevertheless, CIDNs may be vulnerable to insider attacks, and there is a great need for deploying appropriate trust management schemes to protect CIDNs in practice. In this work, we advocate the effectiveness of intrusion sensitivity-based trust management model and describe an engineering way to automatically allocate the sensitivity values by using a support vector machine (SVM) classifier. To explore the allocation performance, we compare our classifier with several traditional supervised algorithms in the evaluation. We further investigate the performance of our enhanced trust management scheme in a real network environment under adversarial scenarios, and the experimental results indicate that our approach can be more effective in detecting insider attacks as compared with similar approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Auria, L., Moro, R.A.: Support vector machines (SVM) as a technique for solvency analysis. DIW Berlin Discussion Paper no. 811 (2008)
Bao, F., Chen, I.R., Chang, M., Cho, J.H.: Hierarchical trust management for wireless sensor networks and its applications to trust-based routing and intrusion detection. IEEE Trans. Netw. Serv. Manage. 9(2), 169–183 (2012)
Duma, C., Karresand, M., Shahmehri, N., Caronni, G.: A trust-aware, P2P-based overlay for intrusion detection. In: Proceedings of DEXA Workshop, pp. 692–697 (2006)
Fung, C.J., Baysal, O., Zhang, J., Aib, I., Boutaba, R.: Trust management for host-based collaborative intrusion detection. In: De Turck, F., Kellerer, W., Kormentzas, G. (eds.) DSOM 2008. LNCS, vol. 5273, pp. 109–122. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87353-2_9
Fung, C.J., Zhang, J., Aib, I., Boutaba, R.: Robust and scalable trust management for collaborative intrusion detection. In: Proceedings of IM, pp. 33–40 (2009)
Li, J., Li, R., Kato, J.: Future trust management framework for mobile ad hoc networks. IEEE Commun. Mag. 46(2), 108–114 (2008)
Liu, X., Zhu, P., Zhang, Y., Chen, K.: A collaborative intrusion detection mechanism against false data injection attack in advanced metering infrastructure. IEEE Trans. Smart Grid 6(5), 2435–2443 (2015)
Li, W., Meng, W., Kwok, L.F.: Enhancing trust evaluation using intrusion sensitivity in collaborative intrusion detection networks: feasibility and challenges. In: Proceedings of the 9th International Conference on Computational Intelligence and Security (CIS), pp. 518–522 (2013)
Li, W., Meng, W., Kwok, L.-F., Ip, H.H.S.: PMFA: toward passive message fingerprint attacks on challenge-based collaborative intrusion detection networks. In: Chen, J., Piuri, V., Su, C., Yung, M. (eds.) NSS 2016. LNCS, vol. 9955, pp. 433–449. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46298-1_28
Li, W., Meng, W.: Enhancing collaborative intrusion detection networks using intrusion sensitivity in detecting pollution attacks. Inf. Comput. Secur. 24(3), 265–276 (2016)
Li, W., Meng, W., Kwok, L.F., Ip, H.H.S.: Enhancing collaborative intrusion detection networks against insider attacks using supervised intrusion sensitivity-based trust management model. J. Netw. Comput. Appl. 77, 135–145 (2017)
LIBSVM Tools: Multi-label classification. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/multilabel/
Meng, Y., Kwok, L.F.: Adaptive false alarm filter using machine learning in intrusion detection. In: Wang, Y., Li, T. (eds.) Practical Applications of Intelligent Systems. AINSC, vol. 124. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-25658-5_68
Meng, Y., Li, W., Kwok, L.: Evaluation of detecting malicious nodes using bayesian model in wireless intrusion detection. In: Lopez, J., Huang, X., Sandhu, R. (eds.) NSS 2013. LNCS, vol. 7873, pp. 40–53. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38631-2_4
Paola, J.D., Schowengerdt, R.A.: A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification. IEEE Trans. Geosci. Remote Sens. 33(4), 981–996 (1995)
Qin, Z., Jia, Z., Chen, X.: Fuzzy dynamic programming based trusted routing decision in mobile ad hoc networks. In: Proceedings of the 5th IEEE International Symposium on Embedded Computing (SEC), pp. 180–185 (2008)
Resnick, P., Kuwabara, K., Zeckhauser, R., Friedman, E.: Reputation systems. Commun. ACM 43(12), 45–48 (2000)
Roesch, M.: Snort: lightweight intrusion detection for networks. In: Proceedings of Usenix Lisa Conference, pp. 229–238 (1999)
Scarfone, K., Mell, P.: Guide to intrusion detection and prevention systems (IDPS). NIST Special Publication 800–94, Feburary 2007
Shamshirband, S., Anuar, N.B., Kiah, M.L.M., Patel, A.: An appraisal and design of a multi-agent system based cooperative wireless intrusion detection computational intelligence technique. Eng. Appl. Artif. Intell. 26(9), 2105–2127 (2013)
Snort, Homepage. http://www.snort.org/
Vasilomanolakis, E., Karuppayah, S., Muhlhauser, M., Fischer, M.: Taxonomy and survey of collaborative intrusion detection. ACM Comput. Surv. 47(4), 55 (2015)
Wu, Y.S., Foo, B., Mei, Y., Bagchi, S.: Collaborative intrusion detection system (CIDS): a framework for accurate and efficient IDS. In: Proceedings of ACSAC, pp. 234–244 (2003)
Yuan, Y., Shaw, M.J.: Induction of fuzzy decision trees. Fuzzy Sets Syst. 69(2), 125–139 (1995)
Acknowledgments
This work was partially supported by National Natural Science Foundation of China (No. 61802077).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, W., Meng, W., Kwok, L.F. (2019). Evaluating Intrusion Sensitivity Allocation with Support Vector Machine for Collaborative Intrusion Detection. In: Heng, SH., Lopez, J. (eds) Information Security Practice and Experience. ISPEC 2019. Lecture Notes in Computer Science(), vol 11879. Springer, Cham. https://doi.org/10.1007/978-3-030-34339-2_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-34339-2_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34338-5
Online ISBN: 978-3-030-34339-2
eBook Packages: Computer ScienceComputer Science (R0)