Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multimodal 3D Facade Reconstruction Using 3D LiDAR and Images

  • Conference paper
  • First Online:
Image and Video Technology (PSIVT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11854))

Included in the following conference series:

Abstract

Reconstruction of 3D facades is an important problem in systems that reconstruct urban scenes. Facade reconstruction can be challenging due to the typically large featureless surfaces involved. In this work, we investigate the use of combining a commercially available LiDAR with a GoPro camera to serve as inputs for a system that generates accurate 3D facade reconstructions. A key challenge is that 3D point clouds from LiDARs tend to be sparse. We propose to overcome this by the use of semantic information extracted from RGB images, along with a state-of-the-art depth completion method. Our results demonstrate that the proposed approach is capable of producing highly accurate 3D reconstructions of building facades that rival the current state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://velodynelidar.com/hdl-32e.html.

  2. 2.

    https://www.dxomark.com/Cameras/GoPro/HERO5-Black---Specifications.

  3. 3.

    https://github.com/yindaz/DeepCompletionRelease/tree/master/pre_train_model.

References

  1. Becker, S., Haala, N.: Combined feature extraction for façade reconstruction. In: Proceedings of ISPRS Workshop Laser Scanning, pp. 241–247 (2007)

    Google Scholar 

  2. Becker, S., Haala, N.: Refinement of building facades by integrated processing of lidar and image data. Int. Arch. Photogram. Remote Sensing Spat. Inf. Sci. 36, 7–12 (2007)

    Google Scholar 

  3. Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., Çöltekin, A.: Applications of 3D city models: state of the art review. ISPRS Int. J. Geo Inf. 4(4), 2842–2889 (2015). https://doi.org/10.3390/ijgi4042842

    Article  Google Scholar 

  4. Chen, J., Chen, B.: Architectural modeling from sparsely scanned range data. Int. J. Comput. Vis. 78(2), 223–236 (2008)

    Article  Google Scholar 

  5. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: The European Conference on Computer Vision, September 2018

    Google Scholar 

  6. Fruh, C., Zakhor, A.: 3D model generation for cities using aerial photographs and ground level laser scans. In: The IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. II–II, December 2001. https://doi.org/10.1109/CVPR.2001.990921

  7. Gee, T., James, J., Van Der Mark, W., Strozzi, A.G., Delmas, P., Gimel’farb, G.: Estimating extrinsic parameters between a stereo rig and a multi-layer lidar using plane matching and circle feature extraction. In: The Fifteenth IAPR International Conference on Machine Vision Applications, pp. 21–24, May 2017. https://doi.org/10.23919/MVA.2017.7986763

  8. Hao, W., Wang, Y., Liang, W.: Slice-based building facade reconstruction from 3D point clouds. Int. J. Remote Sensing 39(20), 6587–6606 (2018)

    Article  Google Scholar 

  9. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: The IEEE International Conference on Computer Vision, October 2017. https://doi.org/10.1109/ICCV.2017.322

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition, June 2016. https://doi.org/10.1109/CVPR.2016.90

  11. Hohmann, B., Krispel, U., Havemann, S., Fellner, D.: Cityfit-high-quality urban reconstructions by fitting shape grammars to images and derived textured point clouds. In: The 3rd ISPRS International Workshop 3D-ARCH, pp. 25–28 (2009)

    Google Scholar 

  12. Li, Y., Zheng, Q., Sharf, A., Cohen-Or, D., Chen, B., Mitra, N.J.: 2D–3D fusion for layer decomposition of urban facades. In: The IEEE International Conference on Computer Vision, pp. 882–889, November 2011. https://doi.org/10.1109/ICCV.2011.6126329

  13. Lin, T., et al.: Microsoft COCO: common objects in context. CoRR (2014). http://arxiv.org/abs/1405.0312

  14. Liu, L., Stamos, I.: Automatic 3D to 2D registration for the photorealistic rendering of urban scenes. In: The IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 137–143 (2005). https://doi.org/10.1109/CVPR.2005.80

  15. Liu, L., Stamos, I.: A systematic approach for 2D-image to 3D-range registration in urban environments. In: The IEEE International Conference on Computer Vision, pp. 1–8, October 2007. https://doi.org/10.1109/ICCV.2007.4409215

  16. Ma, F., Karaman, S.: Sparse-to-dense: depth prediction from sparse depth samples and a single image. In: IEEE International Conference on Robotics and Automation, May 2018

    Google Scholar 

  17. Martinović, A., Mathias, M., Weissenberg, J., Van Gool, L.: A three-layered approach to facade parsing. In: The European Conference on Computer Vision, pp. 416–429 (2012)

    Google Scholar 

  18. Marton, Z.C., Rusu, R.B., Beetz, M.: On fast surface reconstruction methods for large and noisy datasets. In: The IEEE International Conference on Robotics and Automation, May 2009. https://doi.org/10.1109/ROBOT.2009.5152628

  19. Müller, P., Zeng, G., Wonka, P., Van Gool, L.: Image-based procedural modeling of facades. In: ACM SIGGRAPH 2007 Papers, SIGGRAPH 2007, ACM, New York (2007). https://doi.org/10.1145/1275808.1276484

  20. Pu, S., Vosselman, G.: Building facade reconstruction by fusing terrestrial laser points and images. Sensors 9(6), 4525–4542 (2009)

    Article  Google Scholar 

  21. Pu, S., Vosselman, G.: Refining building facade models with images. In: ISPRS Workshop, CMRT09-City Models, Roads and Traffic, vol. 38, pp. 3–4 (2009)

    Google Scholar 

  22. Riemenschneider, H., et al.: Irregular lattices for complex shape grammar facade parsing. In: The IEEE Conference on Computer Vision and Pattern Recognition, pp. 1640–1647, June 2012

    Google Scholar 

  23. Stamos, I., Allen, P.K.: 3-D model construction using range and image data. In: The IEEE Conference on Computer Vision and Pattern Recognition, p. 1531, June 2000. https://doi.org/10.1109/CVPR.2000.855865

  24. Stamos, I., Allen, P.K.: Automatic registration of 2-D with 3-D imagery in urban environments. In: The IEEE International Conference on Computer Vision, vol. 2, pp. 731–736 (2001). https://doi.org/10.1109/ICCV.2001.937699

  25. Torr, P.H., Zisserman, A.: MLESAC: a new robust estimator with application to estimating image geometry. Comput. Vis. Image Underst. 78(1), 138–156 (2000)

    Article  Google Scholar 

  26. Tyleček, R., Šára, R.: Spatial pattern templates for recognition of objects with regular structure. In: GCPR: Pattern Recognition, pp. 364–374 (2013)

    Google Scholar 

  27. Yang, L., Sheng, Y., Wang, B.: 3D reconstruction of building facade with fused data of terrestrial lidar data and optical image. Optik Int. J. Light and Electron Opt. 127(4), 2165–2168 (2016). https://doi.org/10.1016/j.ijleo.2015.11.147

    Article  Google Scholar 

  28. Yu, Q., Helmholz, P., Belton, D.: Semantically enhanced 3D building model reconstruction from terrestrial laser-scanning data. J. Surveying Eng. 143(4) (2017). https://doi.org/10.1061/(ASCE)SU.1943-5428.0000232

  29. Zhang, Y., Funkhouser, T.A.: Deep depth completion of a single RGB-D image. CoRR abs/1803.09326 (2018)

    Google Scholar 

  30. Zhao, H., Shibasaki, R.: Reconstructing a textured cad model of an urban environment using vehicle-borne laser range scanners and line cameras. Mach. Vis. Appl. 14(1), 35–41 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haotian Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, H., Chen, CY., Delmas, P.J., Gee, T.E., van der Mark, W. (2019). Multimodal 3D Facade Reconstruction Using 3D LiDAR and Images. In: Lee, C., Su, Z., Sugimoto, A. (eds) Image and Video Technology. PSIVT 2019. Lecture Notes in Computer Science(), vol 11854. Springer, Cham. https://doi.org/10.1007/978-3-030-34879-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34879-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34878-6

  • Online ISBN: 978-3-030-34879-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics