Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Distributed Processor Load Balancing Based on Multi-objective Extremal Optimization

  • Conference paper
  • First Online:
Internet and Distributed Computing Systems (IDCS 2019)

Abstract

The paper proposes and discusses distributed processor load balancing algorithms which are based on nature inspired approach of multi-objective Extremal Optimization. Extremal Optimization is used for defining task migration aiming at processor load balancing in execution of graph-represented distributed programs. The analysed multi-objective algorithms are based on three or four criteria selected from the following four choices: the balance of computational loads of processors in the system, the minimal total volume of application data transfers between processors, the number of task migrations during program execution and the influence of task migrations on computational load imbalance and the communication volume. The quality of the resulting load balancing is assessed by simulation of the execution of the distributed program macro data flow graphs, including all steps of the load balancing algorithm. It is done following the event-driven model in a simulator of a message passing multiprocessor system. The experimental comparison of the multi-objective load balancing to the single objective algorithms demonstrated the superiority of the multi-objective approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boettcher, S., Percus, A.G.: Extremal optimization: methods derived from co-evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 1999), pp. 825–832. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  2. Lu, Y.Z., Chen, Y.W., Chen, M.R., Chen, P., Zeng, G.Q.: Extremal Optimization: Fundamentals, Algorithms, and Applications, p. 334. CRC Press, Boca Raton (2016)

    MATH  Google Scholar 

  3. De Falco, I., Laskowski, E., Olejnik, R., Scafuri, U., Tarantino, E., Tudruj, M.: Improving extremal optimization in load balancing by local search. In: Esparcia-Alcázar, A.I., Mora, A.M. (eds.) EvoApplications 2014. LNCS, vol. 8602, pp. 51–62. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45523-4_5

    Chapter  Google Scholar 

  4. De Falco, I., Laskowski, E., Olejnik, R., Scafuri, U., Tarantino, E., Tudruj, M.: Extremal optimization applied to load balancing in execution of distributed programs. Appl. Soft Comput. 30, 501–513 (2015)

    Article  Google Scholar 

  5. De Falco, I., Scafuri, U., Laskowski, E., Tarantino, E., Olejnik, R., Tudruj, M.: Effective processor load balancing using multi-objective parallel extremal optimization. In: GECCO 2018, Companion Material Proceedings, pp. 1292–1299. ACM (2018)

    Google Scholar 

  6. Xu, C., Lau, F.C.M.: Load Balancing in Parallel Computers: Theory and Practice. Kluwer Academic Publishers, Dordrecht (1997)

    MATH  Google Scholar 

  7. Khan, R.Z., Ali, J.: Classification of task partitioning and load balancing strategies in distributed parallel computing systems. Int. J. Comput. Appl. 60(17), 48–53 (2012)

    Google Scholar 

  8. Mishra, M., Agarwal, S., Mishra, P., Singh, S.: Comparative analysis of various evolutionary techniques of load balancing: a review. Int. J. Comput. Appl. 63(15), 8–13 (2013)

    Google Scholar 

  9. Tanvi, Kaur, K.: A study on extremal optimization based load balancing techniques. Indian J. Comput. Sci. Eng. 8(2), 95–101 (2017)

    Google Scholar 

  10. Ahmed, E., Elettreby, M.F.: On multi-objective evolution model. Int. J. Mod. Phys. C 15(9), 1189–1195 (2004)

    Article  Google Scholar 

  11. Gómez-Meneses, P., Randall, M., Lewis, A.: A hybrid multi-objective extremal optimisation approach for multi-objective combinatorial optimisation problems. Bond University, Griffith University, Australia (2010)

    Google Scholar 

  12. Zeigler, B.: Hierarchical, modular discrete-event modelling in an object-oriented environment. Simulation 49(5), 219–230 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eryk Laskowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Falco, I., Laskowski, E., Olejnik, R., Scafuri, U., Tarantino, E., Tudruj, M. (2019). Distributed Processor Load Balancing Based on Multi-objective Extremal Optimization. In: Montella, R., Ciaramella, A., Fortino, G., Guerrieri, A., Liotta, A. (eds) Internet and Distributed Computing Systems . IDCS 2019. Lecture Notes in Computer Science(), vol 11874. Springer, Cham. https://doi.org/10.1007/978-3-030-34914-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34914-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34913-4

  • Online ISBN: 978-3-030-34914-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics