Abstract
The Camenisch-Lysyanskaya rerandomizable signature (CL-RRS) scheme is an important tool in the construction of privacy preserving protocols. One of the limitations of CL-RRS is that the signature size is linear in the number of messages to be signed. In 2016, Pointcheval-Sanders introduced a variant of rerandomizable signature (PS-RRS) scheme which removes the above limitation. However, the security of PS-RRS scheme was proved under an interactive assumption. In 2018, Pointcheval-Sanders improved this to give a reduction under a parameterized assumption.
In 2012, Gerbush et al. introduced the dual-form signature technique to remove the dependency on interactive/parameterized assumption. They applied this technique on the CL-RRS scheme (for single message) and proved its unforgeability under static assumptions instead of the interactive assumption used in the original work but in the symmetric composite-order pairing setting.
In this work, we realize a fully rerandomizable signature scheme in the prime order setting without random oracle based on the SXDH assumption. The signature structure is derived from Ghadafi’s structure-preserving signature. We first apply the dual-form signature technique to obtain a composite-order variant, called RRSc. A signature in RRSc consists of only two group elements and is thus independent of the message block length. The security of the proposed scheme is based on subgroup hiding assumptions. Then we use the dual pairing vector space framework to obtain a prime-order variant called RRS and prove its security under the SXDH assumption.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k-TAA. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg (2006). https://doi.org/10.1007/11832072_8
Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_14
Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get shorty via group signatures without encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 381–398. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-4_24
Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N.P., Warinschi, B.: Anonymous attestation with user-controlled linkability. Int. J. Inf. Secur. 12(3), 219–249 (2013)
Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and identity-based sequential aggregate signatures, with applications to secure routing. In: Ning, P., De Capitani di Vimercati, S., Syverson, P.F. (eds.) ACM CCS, pp. 276–285 (2007)
Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy expansion, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 503–534. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_19
Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_1
Chatterjee, S., Kabaleeshwaran, R.: Towards static assumption based cryptosystem in pairing setting: further applications of DéjàQ and Dual-Form signature (Extended Abstract). In: Baek, J., Susilo, W., Kim, J. (eds.) ProvSec 2018. LNCS, vol. 11192, pp. 220–238. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01446-9_13
Chatterjee, S., Kabaleeshwaran, R.: Rerandomizable Signatures under Standard Assumption. IACR Cryptology ePrint Archive, 2019:1144 (2019)
Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_4
Chen, J., Lim, H.W., Ling, S., Wang, H., Wee, H.: Shorter IBE and signatures via asymmetric pairings. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 122–140. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36334-4_8
Chase, M., Meiklejohn, S.: Déjà Q: using dual systems to revisit q-type assumptions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 622–639. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_34
Chase, M., Maller, M., Meiklejohn, S.: Déjà Q all over again: tighter and broader reductions of q-type assumptions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 655–681. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_22
Canard, S., Pointcheval, D., Sanders, O., Traoré, J.: Divisible e-cash made practical. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 77–100. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_4
Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delegation for boolean formula. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 277–297. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_16
Freeman, D.M.: Converting pairing-based cryptosystems from composite-order groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 44–61. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_3
Ghadafi, E.: More efficient structure-preserving signatures - or: bypassing the type-III lower bounds. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 43–61. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_3
Gerbush, M., Lewko, A., O’Neill, A., Waters, B.: Dual form signatures: an approach for proving security from static assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 25–42. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_4
Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Appl. Math. 156(16), 3113–3121 (2008)
Guillevic, A.: Arithmetic of Pairings on Algebraic Curves for Cryptography. École Normale Supérieure, Paris (2013). PhD thesis
Lewko, A.: Tools for simulating features of composite order bilinear groups in the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_20
Libert, B., Joye, M., Yung, M., Peters, T.: Concise multi-challenge CCA-secure encryption and signatures with almost tight security. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 1–21. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_1
Lee, K., Lee, D.H., Yung, M.: Aggregating CL-signatures revisited: extended functionality and better efficiency. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 171–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_14
Libert, B., Mouhartem, F., Peters, T., Yung, M.: Practical “Signatures with efficient protocols” from simple assumptions. In: Chen, X., Wang, X., Huang, X. (eds.) AsiaCCS, pp. 511–522. ACM (2016)
Libert, B., Peters, T., Yung, M.: Short group signatures via structure-preserving signatures: standard model security from simple assumptions. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 296–316. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_15
Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure hibe with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_27
Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 57–74. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85538-5_4
Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_11
Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8_7
Pointcheval, D., Sanders, O.: Reassessing security of randomizable signatures. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 319–338. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0_17
Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. IACR Cryptology ePrint Archive, 2009:385 (2009)
Yuen, T.H., Chow, S.S.M., Zhang, C., Yiu, S.-M.: Exponent-inversion Signatures and IBE under Static Assumptions. IACR Cryptology ePrint Archive, 2014:311 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Chatterjee, S., Kabaleeshwaran, R. (2019). Rerandomizable Signatures Under Standard Assumption. In: Hao, F., Ruj, S., Sen Gupta, S. (eds) Progress in Cryptology – INDOCRYPT 2019. INDOCRYPT 2019. Lecture Notes in Computer Science(), vol 11898. Springer, Cham. https://doi.org/10.1007/978-3-030-35423-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-35423-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35422-0
Online ISBN: 978-3-030-35423-7
eBook Packages: Computer ScienceComputer Science (R0)