Abstract
In this work we introduce numerical algorithm for solving intuitionistic fuzzy differential equations. We discuss in detail a numerical method based on a Runge-Kutta Nyström method. Sufficiently conditions for the convergence of the proposed algorithms are given and their applicability is illustrated via an example.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adak, A.K., Bhowmik, M., Pal, M.: Intuitionistic fuzzy block matrix and its some properties. Ann. Pure Appl. Math. 1(1), 13–31 (2012)
Atanassov, K.T.: Intuitionistic fuzzy sets. VII ITKR?s session, Sofia (deposited in Central Science and Technical Library of the Bulgarian Academy of Sciences 1697/84) (1983)
Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)
Atanassov, K.T., Gargov, G.: Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31(3), 43–49 (1989)
Atanassov, K.T.: More on intuitionistic fuzzy sets. Fuzzy Sets Syst. 33(1), 37–45 (1989)
Atanassov, K.T.: Operators over interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 64(2), 159–174 (1994)
Atanassov, K.T., Gargov, G.: Elements of intuitionistic fuzzy logic. Part I, Fuzzy Sets Syst. 95(1), 39–52 (1998)
Atanassov, K.T.: Intuitionistic Fuzzy Sets. Physica-Verlag, Heidelberg, New York (1999)
Atanassov, K.T.: Two theorems for Intuitionistic fuzzy sets. Fuzzy Sets Syst. 110, 267–269 (2000)
Buhaesku, T.: On the convexity of intuitionistic fuzzy sets. In: Itinerant Seminar on Functional Equations, Approximation and Convexity, pp. 137–144. Cluj-Napoca (1988)
Buhaesku, T.: Some observations on intuitionistic fuzzy relations. In: Itinerant Seminar of Functional Equations, Approximation and Convexity, pp. 111–118 (1989)
Ban, A.I.: Nearest interval approximation of an intuitionistic fuzzy number. In: Computational Intelligence, Theory and Applications, pp. 229–240. Springer-Verlag, Berlin, Heidelberg (2006)
Ben Amma, B., Melliani, S., Chadli, L.S.: Numerical solution of intuitionistic fuzzy differential equations by Euler and Taylor methods. Notes Intuit.Istic Fuzzy Sets, 22(2), 71–86 (2016)
Ben Amma, B., Melliani, S., Chadli, L.S.: Numerical solution of intuitionistic fuzzy differential equations by Adams three order predictor-corrector method. Notes on Intuitionistic Fuzzy Sets 22(3), 47–69 (2016)
Ben Amma, B., Chadli, L.S.: Numerical solution of intuitionistic fuzzy differential equations by Runge-Kutta Method of order four. Notes on Intuitionistic Fuzzy Sets 22(4), 42–52 (2016)
Ben Amma, B., Melliani, S., Chadli, L.S.: The Cauchy Problem Of Intuitionistic Fuzzy Differential Equations. Notes on Intuitionistic Fuzzy Sets, 24(1), 37–47 (2018)
Ben Amma, B., Melliani, S., Chadli, L.S.: Intuitionistic Fuzzy Functional Differential Equations, Fuzzy Logic in Intelligent System Design: Theory and Applications, Ed. pp. 335–357. Springer International Publishing, Cham (2018)
Ben Amma B., Melliani S., Chadli L.S. (2019) A Fourth order runge-kutta gill method for the numerical solution of intuitionistic fuzzy differential equations. In: Melliani S., Castillo O. (eds.) Recent Advances in Intuitionistic Fuzzy Logic Systems. Studies in Fuzziness and Soft Computing, vol. 372. Springer, Cham
Cornelis, C., Deschrijver, G., Kerre, E.E.: Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, application. Int. J. Approx. Reason. 35, 55–95 (2004)
De, S.K., Biswas, R., Roy, A.R.: An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets Syst. 117, 209–213 (2001)
Deschrijver, G., Kerre, E.E.: On the relationship between intuitionistic fuzzy sets and some other extensions of fuzzy set theory. J. Fuzzy Math. 10(3), 711–724 (2002)
Gerstenkorn, T., Manko, J.: Correlation of intuitionistic fuzzy sets. Fuzzy Sets Syst. 44, 39–43 (1991)
Kharal, A.: Homeopathic drug selection using intuitionistic fuzzy sets. Homeopathy 98, 35–39 (2009)
Li, D.F., Cheng, C.T.: New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions. Pattern Recognit. Lett. 23, 221–225 (2002)
Li, D.F.: Multiattribute decision making models and methods using intuitionistic fuzzy sets. J. Comput. Syst. Sci. 70, 73–85 (2005)
Melliani, S., Chadli, L.S.: Intuitionistic fuzzy differential equation. Notes on Intuitionistic Fuzzy Sets 6, 37–41 (2000)
Mahapatra, G.S., Roy, T.K.: Reliability evaluation using triangular intuitionistic fuzzy numbers arithmetic operations. Proc. World Acad. Sci., Eng. Technol. 38, 587–595 (2009)
Melliani, S., Elomari, M., Chadli, L.S., Ettoussi, R.: Intuitionistic Fuzzy Metric Space. Notes on Intuitionistic Fuzzy sets 21(1), 43–53 (2015)
Melliani, S., Elomari, M., Chadli, L.S., Ettoussi, R.: Intuitionistic fuzzy fractional equation. Notes on Intuitionistic Fuzzy sets 21(4), 76–89 (2015)
Melliani, S., Elomari, M., Atraoui, M., Chadli, L.S.: Intuitionistic fuzzy differential equation with nonlocal condition. Notes on Intuitionistic Fuzzy sets 21(4), 58–68 (2015)
Melliani, S., Atti, H., Ben Amma, B., Chadli, L.S.: Solution of n-th order intuitionistic fuzzy differential equation by variational iteration method, Notes on Intuitionistic Fuzzy sets, 24(3), 92–105 (2018)
Nikolova, M., Nikolov, N., Cornelis, C., Deschrijver, G.: Survey of the research on intuitionistic fuzzy sets. Adv. Stud. Contempor. Math. 4(2), 127–157 (2002)
Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 114(3), 505–518 (2000)
Shu, M.H., Cheng, C.H., Chang, J.R.: Using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly. Microelectron. Reliab. 46(12), 2139–2148 (2006)
Wang, Z., Li, K.W., Wang, W.: An approach to multiattribute decision making with interval-valued intuitionistic fuzzy assessments and incomplete weights. Inf. Sci. 179(17), 3026–3040 (2009)
Ye, J.: Multicriteria fuzzy decision-making method based on a novel accuracy function under interval valued intuitionistic fuzzy environment. Expert Syst. Applicat. 36, 6899–6902 (2009)
Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Ben Amma, B., Melliani, S., Chadli, S. (2020). The Numerical Solution of Intuitionistic Fuzzy Differential Equations by the Third Order Runge-Kutta Nyström Method. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications. Studies in Computational Intelligence, vol 862. Springer, Cham. https://doi.org/10.1007/978-3-030-35445-9_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-35445-9_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35444-2
Online ISBN: 978-3-030-35445-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)