Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Numerical Solution of Intuitionistic Fuzzy Differential Equations by the Third Order Runge-Kutta Nyström Method

  • Chapter
  • First Online:
Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 862))

  • 742 Accesses

Abstract

In this work we introduce numerical algorithm for solving intuitionistic fuzzy differential equations. We discuss in detail a numerical method based on a Runge-Kutta Nyström method. Sufficiently conditions for the convergence of the proposed algorithms are given and their applicability is illustrated via an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adak, A.K., Bhowmik, M., Pal, M.: Intuitionistic fuzzy block matrix and its some properties. Ann. Pure Appl. Math. 1(1), 13–31 (2012)

    Google Scholar 

  2. Atanassov, K.T.: Intuitionistic fuzzy sets. VII ITKR?s session, Sofia (deposited in Central Science and Technical Library of the Bulgarian Academy of Sciences 1697/84) (1983)

    Google Scholar 

  3. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)

    Article  MATH  Google Scholar 

  4. Atanassov, K.T., Gargov, G.: Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31(3), 43–49 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Atanassov, K.T.: More on intuitionistic fuzzy sets. Fuzzy Sets Syst. 33(1), 37–45 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Atanassov, K.T.: Operators over interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 64(2), 159–174 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Atanassov, K.T., Gargov, G.: Elements of intuitionistic fuzzy logic. Part I, Fuzzy Sets Syst. 95(1), 39–52 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Atanassov, K.T.: Intuitionistic Fuzzy Sets. Physica-Verlag, Heidelberg, New York (1999)

    Book  MATH  Google Scholar 

  9. Atanassov, K.T.: Two theorems for Intuitionistic fuzzy sets. Fuzzy Sets Syst. 110, 267–269 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buhaesku, T.: On the convexity of intuitionistic fuzzy sets. In: Itinerant Seminar on Functional Equations, Approximation and Convexity, pp. 137–144. Cluj-Napoca (1988)

    Google Scholar 

  11. Buhaesku, T.: Some observations on intuitionistic fuzzy relations. In: Itinerant Seminar of Functional Equations, Approximation and Convexity, pp. 111–118 (1989)

    Google Scholar 

  12. Ban, A.I.: Nearest interval approximation of an intuitionistic fuzzy number. In: Computational Intelligence, Theory and Applications, pp. 229–240. Springer-Verlag, Berlin, Heidelberg (2006)

    Google Scholar 

  13. Ben Amma, B., Melliani, S., Chadli, L.S.: Numerical solution of intuitionistic fuzzy differential equations by Euler and Taylor methods. Notes Intuit.Istic Fuzzy Sets, 22(2), 71–86 (2016)

    Google Scholar 

  14. Ben Amma, B., Melliani, S., Chadli, L.S.: Numerical solution of intuitionistic fuzzy differential equations by Adams three order predictor-corrector method. Notes on Intuitionistic Fuzzy Sets 22(3), 47–69 (2016)

    Google Scholar 

  15. Ben Amma, B., Chadli, L.S.: Numerical solution of intuitionistic fuzzy differential equations by Runge-Kutta Method of order four. Notes on Intuitionistic Fuzzy Sets 22(4), 42–52 (2016)

    Google Scholar 

  16. Ben Amma, B., Melliani, S., Chadli, L.S.: The Cauchy Problem Of Intuitionistic Fuzzy Differential Equations. Notes on Intuitionistic Fuzzy Sets, 24(1), 37–47 (2018)

    Article  Google Scholar 

  17. Ben Amma, B., Melliani, S., Chadli, L.S.: Intuitionistic Fuzzy Functional Differential Equations, Fuzzy Logic in Intelligent System Design: Theory and Applications, Ed. pp. 335–357. Springer International Publishing, Cham (2018)

    Google Scholar 

  18. Ben Amma B., Melliani S., Chadli L.S. (2019) A Fourth order runge-kutta gill method for the numerical solution of intuitionistic fuzzy differential equations. In: Melliani S., Castillo O. (eds.) Recent Advances in Intuitionistic Fuzzy Logic Systems. Studies in Fuzziness and Soft Computing, vol. 372. Springer, Cham

    Google Scholar 

  19. Cornelis, C., Deschrijver, G., Kerre, E.E.: Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, application. Int. J. Approx. Reason. 35, 55–95 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. De, S.K., Biswas, R., Roy, A.R.: An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets Syst. 117, 209–213 (2001)

    Article  MATH  Google Scholar 

  21. Deschrijver, G., Kerre, E.E.: On the relationship between intuitionistic fuzzy sets and some other extensions of fuzzy set theory. J. Fuzzy Math. 10(3), 711–724 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Gerstenkorn, T., Manko, J.: Correlation of intuitionistic fuzzy sets. Fuzzy Sets Syst. 44, 39–43 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kharal, A.: Homeopathic drug selection using intuitionistic fuzzy sets. Homeopathy 98, 35–39 (2009)

    Article  Google Scholar 

  24. Li, D.F., Cheng, C.T.: New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions. Pattern Recognit. Lett. 23, 221–225 (2002)

    Article  MATH  Google Scholar 

  25. Li, D.F.: Multiattribute decision making models and methods using intuitionistic fuzzy sets. J. Comput. Syst. Sci. 70, 73–85 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Melliani, S., Chadli, L.S.: Intuitionistic fuzzy differential equation. Notes on Intuitionistic Fuzzy Sets 6, 37–41 (2000)

    MathSciNet  MATH  Google Scholar 

  27. Mahapatra, G.S., Roy, T.K.: Reliability evaluation using triangular intuitionistic fuzzy numbers arithmetic operations. Proc. World Acad. Sci., Eng. Technol. 38, 587–595 (2009)

    Google Scholar 

  28. Melliani, S., Elomari, M., Chadli, L.S., Ettoussi, R.: Intuitionistic Fuzzy Metric Space. Notes on Intuitionistic Fuzzy sets 21(1), 43–53 (2015)

    MATH  Google Scholar 

  29. Melliani, S., Elomari, M., Chadli, L.S., Ettoussi, R.: Intuitionistic fuzzy fractional equation. Notes on Intuitionistic Fuzzy sets 21(4), 76–89 (2015)

    MATH  Google Scholar 

  30. Melliani, S., Elomari, M., Atraoui, M., Chadli, L.S.: Intuitionistic fuzzy differential equation with nonlocal condition. Notes on Intuitionistic Fuzzy sets 21(4), 58–68 (2015)

    MATH  Google Scholar 

  31. Melliani, S., Atti, H., Ben Amma, B., Chadli, L.S.: Solution of n-th order intuitionistic fuzzy differential equation by variational iteration method, Notes on Intuitionistic Fuzzy sets, 24(3), 92–105 (2018)

    Article  Google Scholar 

  32. Nikolova, M., Nikolov, N., Cornelis, C., Deschrijver, G.: Survey of the research on intuitionistic fuzzy sets. Adv. Stud. Contempor. Math. 4(2), 127–157 (2002)

    MathSciNet  MATH  Google Scholar 

  33. Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 114(3), 505–518 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shu, M.H., Cheng, C.H., Chang, J.R.: Using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly. Microelectron. Reliab. 46(12), 2139–2148 (2006)

    Article  Google Scholar 

  35. Wang, Z., Li, K.W., Wang, W.: An approach to multiattribute decision making with interval-valued intuitionistic fuzzy assessments and incomplete weights. Inf. Sci. 179(17), 3026–3040 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ye, J.: Multicriteria fuzzy decision-making method based on a novel accuracy function under interval valued intuitionistic fuzzy environment. Expert Syst. Applicat. 36, 6899–6902 (2009)

    Article  Google Scholar 

  37. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bouchra Ben Amma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ben Amma, B., Melliani, S., Chadli, S. (2020). The Numerical Solution of Intuitionistic Fuzzy Differential Equations by the Third Order Runge-Kutta Nyström Method. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications. Studies in Computational Intelligence, vol 862. Springer, Cham. https://doi.org/10.1007/978-3-030-35445-9_11

Download citation

Publish with us

Policies and ethics