Abstract
This chapter introduces the concept of fuzzy world as an ontological basis for modeling complex-adaptive systems. The concept is grounded on a phenomenological analysis of these systems over micro and macro scales. Discussion is developed from a recapitulation of some concepts of complexity science and complex systems modeling. Finally, the argument points out that fuzzy worlds find in fuzzy sets and systems theory a natural epistemological and methodological support.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ackoff, R.L., Gharajedaghi, J.: Reflections on systems and their models. Syst. Res. 13(1), 13–23 (1996)
Arendt, H.: The Human Condition. University Press, Chicago (1989)
Arnold, T.R.: Procedural knowledge for integrated modelling: towards the modelling playground. Environ. Model. Softw. 39, 135–148 (2013)
Bak, P., Chen, K.: Self-organized criticality. Sci. Am. 264(1), 46–53 (1991)
Bar-Yam, Y.: Dynamics of Complex Systems. Addison Wesley Longman, Reading, Massachusetts (1997)
Berger, T., Birner, R., Díaz, J., McCarthy, N., Wittmer, H.: Capturing the complexity of water uses and water users within a multi-agent framework. In: Craswell, E., Bonnell, M., Bossio, D., Demuth, S., Van De Giesen, N. (eds.) Integrated Assessment of Water Resources and Global Change: A North-South Analysis, pp. 129–148. Springer, Dordrecht (2007)
Bettencourt, L.: The origins of scaling in cities. Science 340(6139), 1438–1441 (2013)
Cowan, F.S., Allen, J.K., Mistree, F.: Functional modelling in engineering design: a perspectival approach featuring living systems theory. Syst. Res. Behav. Sci. 23(3), 365–381 (2006)
Dopfer, K.: The economic agent as rule maker and rule user: Homo Sapiens Oeconomicus. J. Evol. Econ. 14(2), 177–195 (2004)
Dopfer, K.: Evolutionary economics : a theoretical framework. In: The Evolutionary Foundations of Economics, p. 5 (2005)
Dreyfus, H.: Being-in-the-World: A Commentary on Heidegger’s Being and Time, Division I. Bradford Book, London, UK (1990)
Epstein, J.: Why model? J. Artif. Soc. Soc. Simul. 11(4), 6 (2008)
Epstein, J.M.: Generative Social Science (2006)
Gadamer, H.G.: Notes on planning for the future. Daedalus 95(2), 572–589 (1966)
Heidegger, M.: The question concerning technology. In: The Question Concerning Technology and other essays, chap. 1, pp. 4–35. Garland publishing (1977)
Heidegger, M.: Being and Time (1953), 2nd edn. SUNY Press (2010)
Heidegger, M., Grene, M.: The age of the world view. Boundary 2 4(2), 341–355 (1976)
Holland, J.H.: Complex adaptive systems. Daedalus 121(1), 17–30 (1992)
Jelinek, M., Romme, A.G.L., Boland, R.J.: Introduction to the special issue: organization studies as a science for design: creating collaborative artifacts and research. Organ. Stud. 29(3), 317–329 (2008)
Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Prentice Hall, New Jersey (1995)
Kroes, P.: Engineering design. In: Technical Artefacts: Creations of Mind and Matter, pp. 127–161. Springer, Heidelberg (2012)
Kroes, P., Franssen, M., Van De Poel, I., Ottens, M.: Treating socio-technical systems as engineering systems : some conceptual problems. Syst. Res. Behav. Sci. 814, 803–815 (2006)
Melgarejo, M., Obregon, N.: Diseño de modelos complejos para la simulación de sistemas socio-técnicos. Educación y humanismo 19(33) (2017)
Mendel, J.: Computing with words: Zadeh, Turing, Popper and Occam. IEEE Comput. Intell. Mag. 2(4), 10–17 (2007)
Mendel, J.M.: Uncertain Rule-Based Fuzzy Systems. Springer, Heidelberg (2017)
Mitchell, M.: Complexity: A Guided Tour. Oxford University Press (2009)
Nicolis, G., Nicolis, C.: Foundations of Complex Systems Nonlinear Dynamics, Statistical Physics, Information and Prediction. World Scientific Publishing Co., London, UK (2007)
Nicolis, G., Nicolis, C.: Foundations of complex systems. Eur. Rev. 17, 237 (2009)
Olaya, C., Gómez-quintero, J., Salas, D.: Ontology in action : urban mobility as evolving knowledge. In: 24th Annual Conference of the European Association for Evolutionary Political Economy. Cracow, Poland (2012)
Pahl-Wostl, C.: The implications of complexity for integrated resources management. Environ. Model. Softw. 22(5), 561–569 (2007)
Rescher, N.: Process philosphy. In: Zalta, E. (ed.) The Stanford Encyclopedia of Philosophy (2008)
Riveros Varela, C.A., Beltran Velandia, F., Melgarejo Rey, M.A., Gonzalez Romero, N., Obregon Neira, N.: Foraging multi-agent system simulation based on attachment theory. In: Sanayei, A., Rössler, O.E., Zelinka, I. (eds.) ISCS 2014: Interdisciplinary Symposium on Complex Systems, pp. 359–364. Springer International Publishing, Cham (2015)
Rzevski, G.: Modelling large complex systems using multi-agent technology. In: 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, pp. 434–437 (2012)
Schwaninger, M., Ambroz, K., Olaya, C.: The complexity challenge: a case for model-based management . In: Proceedings of the 2007 International Conference of the System Dynamics Society, pp. 1–29 (2007)
Sice, P., French, I.: A holistic frame-of-reference for modelling social systems. Kybernetes 35(6), 851–864 (2006)
Sun, R.: Cognitive science meets multi-agent systems: a prolegomenon. Philos. Psychol. 14(1), 5–28 (2001)
Torrens, P.M., Nara, A.: Modeling gentrification dynamics: a hybrid approach. Comput. Environ. Urban Syst. 31(3), 337–361 (2007)
Van Delden, H., Seppelt, R., White, R., Jakeman, A.J.: A methodology for the design and development of integrated models for policy support. Environ. Model. Softw. 26(3), 266–279 (2011)
Voinov, A., Bousquet, F.: Modelling with stakeholders. Environ. Model. Softw. 25(11), 1268–1281 (2010)
Wolfram, S.: A New Kind of Science. Wolfram Media Inc (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Melgarejo, M. (2020). Fuzzy Worlds and the Quest for Modeling Complex-Adaptive Systems. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications. Studies in Computational Intelligence, vol 862. Springer, Cham. https://doi.org/10.1007/978-3-030-35445-9_39
Download citation
DOI: https://doi.org/10.1007/978-3-030-35445-9_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35444-2
Online ISBN: 978-3-030-35445-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)