Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 862))

Abstract

This chapter introduces the concept of fuzzy world as an ontological basis for modeling complex-adaptive systems. The concept is grounded on a phenomenological analysis of these systems over micro and macro scales. Discussion is developed from a recapitulation of some concepts of complexity science and complex systems modeling. Finally, the argument points out that fuzzy worlds find in fuzzy sets and systems theory a natural epistemological and methodological support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ackoff, R.L., Gharajedaghi, J.: Reflections on systems and their models. Syst. Res. 13(1), 13–23 (1996)

    Article  Google Scholar 

  2. Arendt, H.: The Human Condition. University Press, Chicago (1989)

    Google Scholar 

  3. Arnold, T.R.: Procedural knowledge for integrated modelling: towards the modelling playground. Environ. Model. Softw. 39, 135–148 (2013)

    Article  Google Scholar 

  4. Bak, P., Chen, K.: Self-organized criticality. Sci. Am. 264(1), 46–53 (1991)

    Article  Google Scholar 

  5. Bar-Yam, Y.: Dynamics of Complex Systems. Addison Wesley Longman, Reading, Massachusetts (1997)

    MATH  Google Scholar 

  6. Berger, T., Birner, R., Díaz, J., McCarthy, N., Wittmer, H.: Capturing the complexity of water uses and water users within a multi-agent framework. In: Craswell, E., Bonnell, M., Bossio, D., Demuth, S., Van De Giesen, N. (eds.) Integrated Assessment of Water Resources and Global Change: A North-South Analysis, pp. 129–148. Springer, Dordrecht (2007)

    Chapter  Google Scholar 

  7. Bettencourt, L.: The origins of scaling in cities. Science 340(6139), 1438–1441 (2013)

    Article  MathSciNet  Google Scholar 

  8. Cowan, F.S., Allen, J.K., Mistree, F.: Functional modelling in engineering design: a perspectival approach featuring living systems theory. Syst. Res. Behav. Sci. 23(3), 365–381 (2006)

    Article  Google Scholar 

  9. Dopfer, K.: The economic agent as rule maker and rule user: Homo Sapiens Oeconomicus. J. Evol. Econ. 14(2), 177–195 (2004)

    Article  Google Scholar 

  10. Dopfer, K.: Evolutionary economics : a theoretical framework. In: The Evolutionary Foundations of Economics, p. 5 (2005)

    Chapter  Google Scholar 

  11. Dreyfus, H.: Being-in-the-World: A Commentary on Heidegger’s Being and Time, Division I. Bradford Book, London, UK (1990)

    Google Scholar 

  12. Epstein, J.: Why model? J. Artif. Soc. Soc. Simul. 11(4), 6 (2008)

    Google Scholar 

  13. Epstein, J.M.: Generative Social Science (2006)

    Google Scholar 

  14. Gadamer, H.G.: Notes on planning for the future. Daedalus 95(2), 572–589 (1966)

    Google Scholar 

  15. Heidegger, M.: The question concerning technology. In: The Question Concerning Technology and other essays, chap. 1, pp. 4–35. Garland publishing (1977)

    Google Scholar 

  16. Heidegger, M.: Being and Time (1953), 2nd edn. SUNY Press (2010)

    Google Scholar 

  17. Heidegger, M., Grene, M.: The age of the world view. Boundary 2 4(2), 341–355 (1976)

    Article  Google Scholar 

  18. Holland, J.H.: Complex adaptive systems. Daedalus 121(1), 17–30 (1992)

    Google Scholar 

  19. Jelinek, M., Romme, A.G.L., Boland, R.J.: Introduction to the special issue: organization studies as a science for design: creating collaborative artifacts and research. Organ. Stud. 29(3), 317–329 (2008)

    Google Scholar 

  20. Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Prentice Hall, New Jersey (1995)

    MATH  Google Scholar 

  21. Kroes, P.: Engineering design. In: Technical Artefacts: Creations of Mind and Matter, pp. 127–161. Springer, Heidelberg (2012)

    Google Scholar 

  22. Kroes, P., Franssen, M., Van De Poel, I., Ottens, M.: Treating socio-technical systems as engineering systems : some conceptual problems. Syst. Res. Behav. Sci. 814, 803–815 (2006)

    Article  Google Scholar 

  23. Melgarejo, M., Obregon, N.: Diseño de modelos complejos para la simulación de sistemas socio-técnicos. Educación y humanismo 19(33) (2017)

    Google Scholar 

  24. Mendel, J.: Computing with words: Zadeh, Turing, Popper and Occam. IEEE Comput. Intell. Mag. 2(4), 10–17 (2007)

    Article  Google Scholar 

  25. Mendel, J.M.: Uncertain Rule-Based Fuzzy Systems. Springer, Heidelberg (2017)

    Chapter  Google Scholar 

  26. Mitchell, M.: Complexity: A Guided Tour. Oxford University Press (2009)

    Google Scholar 

  27. Nicolis, G., Nicolis, C.: Foundations of Complex Systems Nonlinear Dynamics, Statistical Physics, Information and Prediction. World Scientific Publishing Co., London, UK (2007)

    Book  Google Scholar 

  28. Nicolis, G., Nicolis, C.: Foundations of complex systems. Eur. Rev. 17, 237 (2009)

    Article  Google Scholar 

  29. Olaya, C., Gómez-quintero, J., Salas, D.: Ontology in action : urban mobility as evolving knowledge. In: 24th Annual Conference of the European Association for Evolutionary Political Economy. Cracow, Poland (2012)

    Google Scholar 

  30. Pahl-Wostl, C.: The implications of complexity for integrated resources management. Environ. Model. Softw. 22(5), 561–569 (2007)

    Article  Google Scholar 

  31. Rescher, N.: Process philosphy. In: Zalta, E. (ed.) The Stanford Encyclopedia of Philosophy (2008)

    Google Scholar 

  32. Riveros Varela, C.A., Beltran Velandia, F., Melgarejo Rey, M.A., Gonzalez Romero, N., Obregon Neira, N.: Foraging multi-agent system simulation based on attachment theory. In: Sanayei, A., Rössler, O.E., Zelinka, I. (eds.) ISCS 2014: Interdisciplinary Symposium on Complex Systems, pp. 359–364. Springer International Publishing, Cham (2015)

    Chapter  Google Scholar 

  33. Rzevski, G.: Modelling large complex systems using multi-agent technology. In: 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, pp. 434–437 (2012)

    Google Scholar 

  34. Schwaninger, M., Ambroz, K., Olaya, C.: The complexity challenge: a case for model-based management . In: Proceedings of the 2007 International Conference of the System Dynamics Society, pp. 1–29 (2007)

    Google Scholar 

  35. Sice, P., French, I.: A holistic frame-of-reference for modelling social systems. Kybernetes 35(6), 851–864 (2006)

    Article  Google Scholar 

  36. Sun, R.: Cognitive science meets multi-agent systems: a prolegomenon. Philos. Psychol. 14(1), 5–28 (2001)

    Article  Google Scholar 

  37. Torrens, P.M., Nara, A.: Modeling gentrification dynamics: a hybrid approach. Comput. Environ. Urban Syst. 31(3), 337–361 (2007)

    Article  Google Scholar 

  38. Van Delden, H., Seppelt, R., White, R., Jakeman, A.J.: A methodology for the design and development of integrated models for policy support. Environ. Model. Softw. 26(3), 266–279 (2011)

    Article  Google Scholar 

  39. Voinov, A., Bousquet, F.: Modelling with stakeholders. Environ. Model. Softw. 25(11), 1268–1281 (2010)

    Article  Google Scholar 

  40. Wolfram, S.: A New Kind of Science. Wolfram Media Inc (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Melgarejo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Melgarejo, M. (2020). Fuzzy Worlds and the Quest for Modeling Complex-Adaptive Systems. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications. Studies in Computational Intelligence, vol 862. Springer, Cham. https://doi.org/10.1007/978-3-030-35445-9_39

Download citation

Publish with us

Policies and ethics