Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Open-Mindedness of Gradual Argumentation Semantics

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11940))

Included in the following conference series:

  • 687 Accesses

Abstract

Gradual argumentation frameworks allow modeling arguments and their relationships and have been applied to problems like decision support and social media analysis. Semantics assign strength values to arguments based on an initial belief and their relationships. The final assignment should usually satisfy some common-sense properties. One property that may currently be missing in the literature is Open-Mindedness. Intuitively, Open-Mindedness is the ability to move away from the initial belief in an argument if sufficient evidence against this belief is given by other arguments. We generalize and refine a previously introduced notion of Open-Mindedness and use this definition to analyze nine gradual argumentation approaches from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alsinet, T., Argelich, J., Béjar, R., Fernández, C., Mateu, C., Planes, J.: Weighted argumentation for analysis of discussions in Twitter. Int. J. Approximate Reasoning 85, 21–35 (2017)

    Article  MathSciNet  Google Scholar 

  2. Amgoud, L., Ben-Naim, J.: Axiomatic foundations of acceptability semantics. In: International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 2–11 (2016)

    Google Scholar 

  3. Amgoud, L., Ben-Naim, J.: Evaluation of arguments from support relations: axioms and semantics. In: International Joint Conferences on Artificial Intelligence (IJCAI), p. 900 (2016)

    Google Scholar 

  4. Amgoud, L., Ben-Naim, J.: Evaluation of arguments in weighted bipolar graphs. In: Antonucci, A., Cholvy, L., Papini, O. (eds.) ECSQARU 2017. LNCS (LNAI), vol. 10369, pp. 25–35. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61581-3_3

    Chapter  Google Scholar 

  5. Amgoud, L., Ben-Naim, J., Doder, D., Vesic, S.: Ranking arguments with compensation-based semantics. In: International Conference on Principles of Knowledge Representation and Reasoning (KR) (2016)

    Google Scholar 

  6. Amgoud, L., Ben-Naim, J., Doder, D., Vesic, S.: Acceptability semantics for weighted argumentation frameworks. In: IJCAI, vol. 2017, pp. 56–62 (2017)

    Google Scholar 

  7. Amgoud, L., Cayrol, C., Lagasquie-Schiex, M.C., Livet, P.: On bipolarity in argumentation frameworks. Int. J. Intell. Syst. 23(10), 1062–1093 (2008)

    Article  Google Scholar 

  8. Baroni, P., Rago, A., Toni, F.: How many properties do we need for gradual argumentation? In: AAAI Conference on Artificial Intelligence (AAAI), pp. 1736–1743. AAAI (2018)

    Google Scholar 

  9. Baroni, P., Romano, M., Toni, F., Aurisicchio, M., Bertanza, G.: An argumentation-based approach for automatic evaluation of design debates. In: Leite, J., Son, T.C., Torroni, P., van der Torre, L., Woltran, S. (eds.) CLIMA 2013. LNCS (LNAI), vol. 8143, pp. 340–356. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40624-9_21

    Chapter  Google Scholar 

  10. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artif. Intell. 128(1–2), 203–235 (2001)

    Article  MathSciNet  Google Scholar 

  11. Bonzon, E., Delobelle, J., Konieczny, S., Maudet, N.: A comparative study of ranking-based semantics for abstract argumentation. In: AAAI Conference on Artificial Intelligence (AAAI), pp. 914–920 (2016)

    Google Scholar 

  12. Cocarascu, O., Rago, A., Toni, F.: Extracting dialogical explanations for review aggregations with argumentative dialogical agents. In: International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 1261–1269. International Foundation for Autonomous Agents and Multiagent Systems (2019)

    Google Scholar 

  13. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)

    Article  MathSciNet  Google Scholar 

  14. Hunter, A., Polberg, S., Potyka, N.: Updating belief in arguments in epistemic graphs. In: International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 138–147 (2018)

    Google Scholar 

  15. Hunter, A., Thimm, M.: Probabilistic reasoning with abstract argumentation frameworks. J. Artif. Intell. Res. 59, 565–611 (2017)

    Article  MathSciNet  Google Scholar 

  16. Leite, J., Martins, J.: Social abstract argumentation. In: International Joint Conferences on Artificial Intelligence (IJCAI), vol. 11, pp. 2287–2292 (2011)

    Google Scholar 

  17. Li, H., Oren, N., Norman, T.J.: Probabilistic argumentation frameworks. In: Modgil, S., Oren, N., Toni, F. (eds.) TAFA 2011. LNCS (LNAI), vol. 7132, pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29184-5_1

    Chapter  Google Scholar 

  18. Mossakowski, T., Neuhaus, F.: Modular semantics and characteristics for bipolar weighted argumentation graphs. arXiv preprint arXiv:1807.06685 (2018)

  19. Polberg, S., Doder, D.: Probabilistic abstract dialectical frameworks. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 591–599. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0_42

    Chapter  Google Scholar 

  20. Potyka, N.: Continuous dynamical systems for weighted bipolar argumentation. In: International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 148–157 (2018)

    Google Scholar 

  21. Potyka, N.: Extending modular semantics for bipolar weighted argumentation. In: International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 1722–1730. International Foundation for Autonomous Agents and Multiagent Systems (2019)

    Google Scholar 

  22. Rago, A., Toni, F., Aurisicchio, M., Baroni, P.: Discontinuity-free decision support with quantitative argumentation debates. In: International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 63–73 (2016)

    Google Scholar 

  23. Rienstra, T., Thimm, M., Liao, B., van der Torre, L.: Probabilistic abstract argumentation based on SCC decomposability. In: International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 168–177 (2018)

    Google Scholar 

  24. Thiel, M., Ludwig, P., Mossakowski, T., Neuhaus, F., Nürnberger, A.: Web-retrieval supported argument space exploration. In: ACM SIGIR Conference on Human Information Interaction and Retrieval (CHIIR), pp. 309–312. ACM (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Potyka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Potyka, N. (2019). Open-Mindedness of Gradual Argumentation Semantics. In: Ben Amor, N., Quost, B., Theobald, M. (eds) Scalable Uncertainty Management. SUM 2019. Lecture Notes in Computer Science(), vol 11940. Springer, Cham. https://doi.org/10.1007/978-3-030-35514-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35514-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35513-5

  • Online ISBN: 978-3-030-35514-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics