Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Using Graph Convolutional Networks for Approximate Reasoning with Abstract Argumentation Frameworks: A Feasibility Study

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11940))

Included in the following conference series:

Abstract

We employ graph convolutional networks for the purpose of determining the set of acceptable arguments under preferred semantics in abstract argumentation problems. While the latter problem is complexity-wise one of the hardest problems in reasoning with abstract argumentation problems, approximate methods are needed here in order to obtain a practically relevant runtime performance. This first study shows that deep neural network models such as graph convolutional networks significantly improve the runtime while keeping the accuracy of reasoning at about \(80\%\) or even more.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://argumentationcompetition.org.

  2. 2.

    Note that implementation-wise this is not completely true as the size of the output vector has to be fixed.

  3. 3.

    https://sourceforge.net/projects/probo/.

  4. 4.

    https://sourceforge.net/p/afbenchgen/wiki/Home/.

References

  1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. OSDI 16, 265–283 (2016)

    Google Scholar 

  2. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atkinson, K., et al.: Toward artificial argumentation. AI Mag. 38(3), 25–36 (2017)

    Article  MathSciNet  Google Scholar 

  4. Besnard, P., Hunter, A.: Constructing argument graphs with deductive arguments: a tutorial. Argum. Comput. 5(1), 5–30 (2014)

    Article  Google Scholar 

  5. Cerutti, F., Gaggl, S.A., Thimm, M., Wallner, J.P.: Foundations of implementations for formal argumentation. In: Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L. (eds.) Handbook of Formal Argumentation, chap. 15. College Publications, London (2018)

    Google Scholar 

  6. Cerutti, F., Giacomin, M., Vallati, M.: Generating challenging benchmark AFs. In: COMMA, vol. 14, pp. 457–458 (2014)

    Google Scholar 

  7. Cerutti, F., Oren, N., Strass, H., Thimm, M., Vallati, M.: A benchmark framework for a computational argumentation competition. In: COMMA, pp. 459–460 (2014)

    Google Scholar 

  8. Ding, B.N.K.L.: Neural Network Fundamentals with Graphs, Algorithms and Applications. Mac Graw-Hill, New York (1996)

    Google Scholar 

  9. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dvořák, W., Dunne, P.E.: Computational problems in formal argumentation and their complexity. In: Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L. (eds.) Handbook of Formal Argumentation, chap. 14. College Publications, London (2018)

    Google Scholar 

  11. Erdos, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5(1), 17–60 (1960)

    MathSciNet  MATH  Google Scholar 

  12. Gaggl, S.A., Linsbichler, T., Maratea, M., Woltran, S.: Summary report of the second international competition on computational models of argumentation. AI Mag. 39(4), 77–79 (2018)

    Article  Google Scholar 

  13. García, A.J., Simari, G.R.: Defeasible logic programming: DeLP-servers, contextual queries, and explanations for answers. Argum. Comput. 5(1), 63–88 (2014)

    Article  Google Scholar 

  14. Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron) – a review of applications in the atmospheric sciences. Atmos. Environ. 32(14), 2627–2636 (1998)

    Article  Google Scholar 

  15. Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 30(2), 129–150 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jain, A.K., Mao, J., Mohiuddin, K.M.: Artificial neural networks: a tutorial. Computer 29(3), 31–44 (1996)

    Article  Google Scholar 

  17. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  19. Lagniez, J.M., Lonca, E., Mailly, J.G.: CoQuiAAS: a constraint-based quick abstract argumentation solver. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 928–935. IEEE (2015)

    Google Scholar 

  20. Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine learning, neural and statistical classification. Citeseer (1994)

    Google Scholar 

  21. Modgil, S., Prakken, H.: The ASPIC+ framework for structured argumentation: a tutorial. Argum. Comput. 5, 31–62 (2014)

    Article  Google Scholar 

  22. Niu, D., Liu, L., Lü, S.: New stochastic local search approaches for computing preferred extensions of abstract argumentation. AI Commun. 31(4), 369–382 (2018)

    Article  MathSciNet  Google Scholar 

  23. Schmidt, R.F., Lang, F., Heckmann, M.: Physiologie des menschen: mit pathophysiologie. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-540-32910-7

    Book  Google Scholar 

  24. Thimm, M.: Stochastic local search algorithms for abstract argumentation under stable semantics. In: Modgil, S., Budzynska, K., Lawrence, J. (eds.) Proceedings of the Seventh International Conference on Computational Models of Argumentation (COMMA 2018). Frontiers in Artificial Intelligence and Applications, Warsaw, Poland, vol. 305, pp. 169–180, September 2018

    Google Scholar 

  25. Thimm, M., Villata, S.: The first international competition on computational models of argumentation: results and analysis. Artif. Intell. 252, 267–294 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Toni, F.: A tutorial on assumption-based argumentation. Argum. Comput. 5(1), 89–117 (2014)

    Article  Google Scholar 

  27. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440 (1998)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The research reported here was partially supported by the Deutsche Forschungsgemeinschaft (grant KE 1686/3-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Thimm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuhlmann, I., Thimm, M. (2019). Using Graph Convolutional Networks for Approximate Reasoning with Abstract Argumentation Frameworks: A Feasibility Study. In: Ben Amor, N., Quost, B., Theobald, M. (eds) Scalable Uncertainty Management. SUM 2019. Lecture Notes in Computer Science(), vol 11940. Springer, Cham. https://doi.org/10.1007/978-3-030-35514-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35514-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35513-5

  • Online ISBN: 978-3-030-35514-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics