Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Active Preference Elicitation by Bayesian Updating on Optimality Polyhedra

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11940))

Included in the following conference series:

  • 678 Accesses

Abstract

We consider the problem of actively eliciting the preferences of a Decision Maker (DM) that may exhibit some versatility when answering preference queries. Given a set of multicriteria alternatives (choice set) and an aggregation function whose parameter values are unknown, we propose a new incremental elicitation method where the parameter space is partitioned into optimality polyhedra in the same way as in stochastic multicriteria acceptability analysis. Each polyhedron encompasses the subset of parameter values for which a given alternative is optimal (one optimality polyhedron, possibly empty, per alternative in the choice set). The uncertainty about the DM’s judgment is modeled by a probability distribution over the polyhedra of the partition. At each step of the elicitation procedure, the distribution is revised in a Bayesian manner using preference queries whose choice is based on the current solution strategy, that we adapt to minimize the expected regret of the recommended alternative. We interleave the analysis of the set of alternatives with the elicitation of the parameters of the aggregation function (weighted sum or ordered weighted average). Numerical tests have been performed to evaluate the interest of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albert, J.H., Chib, S.: Bayesian analysis of binary and polychotomous response data. J. Am. Stat. Assoc. 88(422), 669–679 (1993)

    Article  MathSciNet  Google Scholar 

  2. Angilella, S., Corrente, S., Greco, S.: Stochastic multiobjective acceptability analysis for the choquet integral preference model and the scale construction problem. Eur. J. Oper. Res. 240(1), 172–182 (2015)

    Article  MathSciNet  Google Scholar 

  3. Benabbou, N., Perny, P.: Incremental weight elicitation for multiobjective state space search. In: AAAI-15, pp. 1093–1099 (2015)

    Google Scholar 

  4. Bourdache, N., Perny, P.: Active preference elicitation based on generalized gini functions: application to the multiagent knapsack problem. In: AAAI 2019, pp. 7741–7748 (2019)

    Google Scholar 

  5. Bourdache, N., Perny, P., Spanjaard, O.: Incremental elicitation of rank-dependent aggregation functions based on Bayesian linear regression. In: IJCAI 2019, pp. 2023–2029 (2019)

    Google Scholar 

  6. Boutilier, C., Patrascu, R., Poupart, P., Schuurmans, D.: Constraint-based optimization and utility elicitation using the minimax decision criterion. Artif. Intell. 170(8–9), 686–713 (2006)

    Article  MathSciNet  Google Scholar 

  7. Braziunas, D., Boutilier, C.: Minimax regret based elicitation of generalized additive utilities. In: Proceedings of UAI-07, pp. 25–32 (2007)

    Google Scholar 

  8. Chajewska, U., Koller, D., Parr, R.: Making rational decisions using adaptive utility elicitation. In: Proceedings of AAAI-00, pp. 363–369 (2000)

    Google Scholar 

  9. Charnetski, J.R., Soland, R.M.: Multiple-attribute decision making with partial information: the comparative hypervolume criterion. Nav. Res. Logist. Q. 25(2), 279–288 (1978)

    Article  MathSciNet  Google Scholar 

  10. Grabisch, M., Labreuche, C.: A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. Ann. OR 175(1), 247–286 (2010)

    Article  MathSciNet  Google Scholar 

  11. Guo, S., Sanner, S.: Multiattribute Bayesian preference elicitation with pairwise comparison queries. In: NIPS, pp. 396–403 (2010)

    Chapter  Google Scholar 

  12. Lahdelma, R., Hokkanen, J., Salminen, P.: SMAA - stochastic multiobjective acceptability analysis. Eur. J. Oper. Res. 106(1), 137–143 (1998)

    Article  Google Scholar 

  13. Li, D.: Convexification of a noninferior frontier. J. Optim. Theory Appl. 88(1), 177–196 (1996)

    Article  MathSciNet  Google Scholar 

  14. Nowak, R.: Noisy generalized binary search. In: Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 22, pp. 1366–1374. Curran Associates, Inc. (2009)

    Google Scholar 

  15. Sauré, D., Vielma, J.P.: Ellipsoidal methods for adaptive choice-based conjoint analysis. Oper. Res. 67, 315–338 (2019)

    MathSciNet  Google Scholar 

  16. Wang, T., Boutilier, C.: Incremental utility elicitation with the minimax regret decision criterion. IJCAI 3, 309–316 (2003)

    Google Scholar 

  17. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadjet Bourdache .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bourdache, N., Perny, P., Spanjaard, O. (2019). Active Preference Elicitation by Bayesian Updating on Optimality Polyhedra. In: Ben Amor, N., Quost, B., Theobald, M. (eds) Scalable Uncertainty Management. SUM 2019. Lecture Notes in Computer Science(), vol 11940. Springer, Cham. https://doi.org/10.1007/978-3-030-35514-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35514-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35513-5

  • Online ISBN: 978-3-030-35514-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics