Abstract
We consider the problem of actively eliciting the preferences of a Decision Maker (DM) that may exhibit some versatility when answering preference queries. Given a set of multicriteria alternatives (choice set) and an aggregation function whose parameter values are unknown, we propose a new incremental elicitation method where the parameter space is partitioned into optimality polyhedra in the same way as in stochastic multicriteria acceptability analysis. Each polyhedron encompasses the subset of parameter values for which a given alternative is optimal (one optimality polyhedron, possibly empty, per alternative in the choice set). The uncertainty about the DM’s judgment is modeled by a probability distribution over the polyhedra of the partition. At each step of the elicitation procedure, the distribution is revised in a Bayesian manner using preference queries whose choice is based on the current solution strategy, that we adapt to minimize the expected regret of the recommended alternative. We interleave the analysis of the set of alternatives with the elicitation of the parameters of the aggregation function (weighted sum or ordered weighted average). Numerical tests have been performed to evaluate the interest of the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albert, J.H., Chib, S.: Bayesian analysis of binary and polychotomous response data. J. Am. Stat. Assoc. 88(422), 669–679 (1993)
Angilella, S., Corrente, S., Greco, S.: Stochastic multiobjective acceptability analysis for the choquet integral preference model and the scale construction problem. Eur. J. Oper. Res. 240(1), 172–182 (2015)
Benabbou, N., Perny, P.: Incremental weight elicitation for multiobjective state space search. In: AAAI-15, pp. 1093–1099 (2015)
Bourdache, N., Perny, P.: Active preference elicitation based on generalized gini functions: application to the multiagent knapsack problem. In: AAAI 2019, pp. 7741–7748 (2019)
Bourdache, N., Perny, P., Spanjaard, O.: Incremental elicitation of rank-dependent aggregation functions based on Bayesian linear regression. In: IJCAI 2019, pp. 2023–2029 (2019)
Boutilier, C., Patrascu, R., Poupart, P., Schuurmans, D.: Constraint-based optimization and utility elicitation using the minimax decision criterion. Artif. Intell. 170(8–9), 686–713 (2006)
Braziunas, D., Boutilier, C.: Minimax regret based elicitation of generalized additive utilities. In: Proceedings of UAI-07, pp. 25–32 (2007)
Chajewska, U., Koller, D., Parr, R.: Making rational decisions using adaptive utility elicitation. In: Proceedings of AAAI-00, pp. 363–369 (2000)
Charnetski, J.R., Soland, R.M.: Multiple-attribute decision making with partial information: the comparative hypervolume criterion. Nav. Res. Logist. Q. 25(2), 279–288 (1978)
Grabisch, M., Labreuche, C.: A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. Ann. OR 175(1), 247–286 (2010)
Guo, S., Sanner, S.: Multiattribute Bayesian preference elicitation with pairwise comparison queries. In: NIPS, pp. 396–403 (2010)
Lahdelma, R., Hokkanen, J., Salminen, P.: SMAA - stochastic multiobjective acceptability analysis. Eur. J. Oper. Res. 106(1), 137–143 (1998)
Li, D.: Convexification of a noninferior frontier. J. Optim. Theory Appl. 88(1), 177–196 (1996)
Nowak, R.: Noisy generalized binary search. In: Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 22, pp. 1366–1374. Curran Associates, Inc. (2009)
Sauré, D., Vielma, J.P.: Ellipsoidal methods for adaptive choice-based conjoint analysis. Oper. Res. 67, 315–338 (2019)
Wang, T., Boutilier, C.: Incremental utility elicitation with the minimax regret decision criterion. IJCAI 3, 309–316 (2003)
Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Bourdache, N., Perny, P., Spanjaard, O. (2019). Active Preference Elicitation by Bayesian Updating on Optimality Polyhedra. In: Ben Amor, N., Quost, B., Theobald, M. (eds) Scalable Uncertainty Management. SUM 2019. Lecture Notes in Computer Science(), vol 11940. Springer, Cham. https://doi.org/10.1007/978-3-030-35514-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-35514-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35513-5
Online ISBN: 978-3-030-35514-2
eBook Packages: Computer ScienceComputer Science (R0)