Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Map Slammer: Densifying Scattered KSLAM 3D Maps with Estimated Depth

  • Conference paper
  • First Online:
Robot 2019: Fourth Iberian Robotics Conference (ROBOT 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1093))

Included in the following conference series:

  • 1563 Accesses

Abstract

There are a range of small-size robots that cannot afford to mount a three-dimensional sensor due to energy, size or power limitations. However, the best localization and mapping algorithms and object recognition methods rely on a three-dimensional representation of the environment to provide enhanced capabilities. Thus, in this work we propose a method to create a dense three-dimensional representation of the environment by fusing the output of a KSLAM algorithm with predicted point clouds. We demonstrate with quantitative and qualitative results the advantages of our method, focusing in three different measures: localization accuracy, densification capabilities and accuracy of the resultant three-dimensional map.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  2. Yahya, N.A.B.H., Ashrafi, N., Humod, A.: Development and adaptability of in-pipe inspection robots. IOSR J. Mech. Civ. Eng. 11, 01–08 (2014)

    Article  Google Scholar 

  3. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: European Conference on Computer Vision, pp. 404–417. Springer (2006)

    Google Scholar 

  4. Deng, C., Wang, S., Huang, Z., Tan, Z., Liu, J.: Unmanned aerial vehicles for power line inspection: a cooperative way in platforms and communications. JCM 9, 687–692 (2014)

    Article  Google Scholar 

  5. Eggert, D., Lorusso, A., Fisher, R.: Estimating 3-D rigid body transformations: a comparison of four major algorithms. Mach. Vis. Appl. 9(5), 272–290 (1997). https://doi.org/10.1007/s001380050048

    Article  Google Scholar 

  6. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: Advances in Neural Information Processing Systems, pp. 2366–2374 (2014)

    Google Scholar 

  7. Hisham, M., Yaakob, S.N., Raof, R.A., Nazren, A.A., Embedded, N.W.: Template matching using sum of squared difference and normalized cross correlation. In: 2015 IEEE Student Conference on Research and Development (SCOReD), pp. 100–104. IEEE (2015)

    Google Scholar 

  8. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Proceedings of the 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 1–10. IEEE Computer Society (2007)

    Google Scholar 

  9. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth prediction with fully convolutional residual networks. In: 2016 Fourth international conference on 3D vision (3DV), pp. 239–248. IEEE (2016)

    Google Scholar 

  10. Linder, T., Tretyakov, V., Blumenthal, S., Molitor, P., Holz, D., Murphy, R., Tadokoro, S., Surmann, H.: Rescue robots at the collapse of the municipal archive of Cologne City: a field report. In: 2010 IEEE Safety Security and Rescue Robotics, pp. 1–6, July 2010

    Google Scholar 

  11. Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projections. Nature 293(5828), 133 (1981)

    Article  Google Scholar 

  12. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  13. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Rob. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  14. Zin, M.R.A.M., Saad, J.M.D., Anuar, A., Zulkarnain, A.T., Sahari, K.: Development of a low cost small sized in-pipe robot. Procedia Eng. 41, 1469–1475 (2012)

    Article  Google Scholar 

  15. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.R.: ORB: an efficient alternative to SIFT or SURF. In: ICCV, vol. 11, p. 2. Citeseer (2011)

    Google Scholar 

  16. Strasdat, H., Montiel, J., Davison, A.J.: Real-time monocular SLAM: why filter? In: 2010 IEEE International Conference on Robotics and Automation, pp. 2657–2664. IEEE (2010)

    Google Scholar 

  17. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: Proceedings of the International Conference on Intelligent Robot Systems (IROS), October 2012

    Google Scholar 

  18. Ummenhofer, B., Zhou, H., Uhrig, J., Mayer, N., Ilg, E., Dosovitskiy, A., Brox, T.: DeMoN: depth and motion network for learning monocular stereo. CoRR abs/1612.02401 (2016). http://arxiv.org/abs/1612.02401

  19. Ummenhofer, B., Zhou, H., Uhrig, J., Mayer, N., Ilg, E., Dosovitskiy, A., Brox, T.: DeMoN: depth and motion network for learning monocular stereo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5038–5047 (2017)

    Google Scholar 

  20. Younes, G., Asmar, D., Shammas, E., Zelek, J.: Keyframe-based monocular SLAM: design, survey, and future directions. Robot. Auton. Syst. 98, 67–88 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Spanish Government TIN2016-76515R Grant, supported with Feder funds and by a Spanish Government grant for cooperating in research tasks ID 998142. This work has also been supported by a Spanish grant for PhD studies ACIF/2017/243 and FPU16/00887. Thanks to Nvidia for the generous donation of a Titan Xp and a Quadro P6000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Gomez-Donoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Torres-Camara, J.M., Escalona, F., Gomez-Donoso, F., Cazorla, M. (2020). Map Slammer: Densifying Scattered KSLAM 3D Maps with Estimated Depth. In: Silva, M., Luís Lima, J., Reis, L., Sanfeliu, A., Tardioli, D. (eds) Robot 2019: Fourth Iberian Robotics Conference. ROBOT 2019. Advances in Intelligent Systems and Computing, vol 1093. Springer, Cham. https://doi.org/10.1007/978-3-030-36150-1_46

Download citation

Publish with us

Policies and ethics