Abstract
Discovering communities in a network is a fundamental and important problem to complex networks. Find the most influential actors among its peers is a major task. If on one side, studies on community detection ignore the influence of actors and communities, on the other hand, ignoring the hierarchy and community structure of the network neglect the actor or community influence. We bridge this gap by combining a dynamic community detection method with a dynamic centrality measure. The proposed enhanced dynamic hierarchical community detection method computes centrality for nodes and aggregated communities and selects each community representative leader using the ranked centrality of every node belonging to the community. This method is then able to unveil, track, and measure the importance of main actors, network intra and inter-community structural hierarchies based on a centrality measure. The empirical analysis performed, using two temporal networks shown that the method is able to find and tracking community leaders in evolving networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Figure 1 online here: https://mmfcordeiro.github.io/LaplaceLouvainResults/Intro.html.
- 2.
Figure 2 online here: https://mmfcordeiro.github.io/LaplaceLouvainResults/Intro2.html.
- 3.
Figure 6 online here: https://mmfcordeiro.github.io/LaplaceLouvainResults/Karate.html.
- 4.
Figure 7 online here: https://mmfcordeiro.github.io/LaplaceLouvainResults/Jure.html.
References
Aggarwal, C., Subbian, K.: Evolutionary network analysis: a survey. ACM Comput. Surv. (CSUR) 47(1), 1–36 (2014)
Bahmani, B., Chowdhury, A., Goel, A.: Fast incremental and personalized PageRank. Proc. VLDB Endow. 4(3), 173–184 (2010)
Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech.: Theor. Exp. 2008(10), P10008 (2008)
Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25, 163–177 (2001)
Chen, P.Y., Hero, A.O.: Multilayer spectral graph clustering via convex layer aggregation: theory and algorithms. IEEE Trans. Sig. Inf. Process. Netw. 3, 553–567 (2017)
Cordeiro, M., Sarmento, R., Gama, J.: Dynamic community detection in evolving networks using locality modularity optimization. Soc. Netw. Anal. Min. 6(1), 15 (2016)
Cordeiro, M., Sarmento, R.P., Brazdil, P., Gama, J.: Dynamic laplace: efficient centrality measure for weighted or unweighted evolving networks. CoRR abs/1808.02960 (2018)
Cordeiro, M., Sarmento, R.P., Brazdil, P., Gama, J.: Evolving networks and social network analysis methods and techniques. In: Višňovský, J., Radošinská, J. (eds.) Social Media and Journalism, chap. 7. IntechOpen, Rijeka (2018)
Desikan, P., Pathak, N., Srivastava, J., Kumar, V.: Incremental page rank computation on evolving graphs. In: Special Interest Tracks and Posters of the 14th International Conference on World Wide Web, WWW 2005, pp. 1094–1095. ACM, New York (2005)
Fortunato, S.: Community detection in graphs, June 2009
Hollocou, A., Maudet, J., Bonald, T., Lelarge, M.: A linear streaming algorithm for community detection in very large networks. CoRR abs/1703.02955 (2017)
Kas, M., Wachs, M., Carley, K.M., Carley, L.R.: Incremental algorithm for updating betweenness centrality in dynamically growing networks. In: 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013), pp. 33–40, August 2013
Kas, M., Carley, K.M., Carley, L.R.: Incremental closeness centrality for dynamically changing social networks. In: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013. pp. 1250–1258. ACM, New York (2013)
Khorasgani, R.R., Chen, J., Zaiane, O.R.: Top leaders community detection approach in information networks. In: Proceedings of the 4th Workshop on Social Network Mining and Analysis (2010)
Kim, K.S., Choi, Y.S.: Incremental iteration method for fast PageRank computation. In: Proceedings of the 9th International Conference on Ubiquitous Information Management and Communication, IMCOM 2015, pp. 80:1–80:5. ACM, New York (2015)
Lancichinetti, A., Fortunato, S.: Consensus clustering in complex networks. Sci. Rep. 2, 336 (2012)
Leung, I.X., Hui, P., Liò, P., Crowcroft, J.: Towards real-time community detection in large networks. Nonlinear Soft Matter Phys. Phys. Rev. E - Stat. 79, 066107 (2009)
Li, J., Wang, X., Deng, K., Yang, X., Sellis, T., Yu, J.X.: Most influential community search over large social networks. In: Proceedings - International Conference on Data Engineering (2017)
Li, R.H., Qin, L., Ye, F., Yu, J.X., Xiaokui, X., Xiao, N., Zheng, Z.: Skyline community search in multi-valued networks. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (2018)
Li, R.H., Qin, L., Yu, J.X., Mao, R.: Influential community search in large networks. Proc. VLDB Endowment 8, 509–520 (2015)
Li, R.H., Qin, L., Yu, J.X., Mao, R.: Finding influential communities in massive networks. VLDB J. 26, 751–776 (2017)
Nasre, M., Pontecorvi, M., Ramachandran, V.: Betweenness centrality - incremental and faster. CoRR abs/1311.2147 (2013)
Nguyen, N.P., Dinh, T.N., Tokala, S., Thai, M.T.: Overlapping communities in dynamic networks: their detection and mobile applications. In: Proceedings of the Annual International Conference on Mobile Computing and Networking, MOBICOM (2011)
Nguyen, N.P., Dinh, T.N., Xuan, Y., Thai, M.T.: Adaptive algorithms for detecting community structure in dynamic social networks. In: INFOCOM, pp. 2282–2290. IEEE (2011)
Oliveira, M.D.B., Gama, J.: An overview of social network analysis. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 2(2), 99–115 (2012)
Palla, G., Barabási, A.L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007)
Qi, X., Duval, R.D., Christensen, K., Fuller, E., Spahiu, A., Wu, Q., Wu, Y., Tang, W., Zhang, C.: Terrorist networks, network energy and node removal: a new measure of centrality based on laplacian energy. Soc. Netw. 02(01), 19–31 (2013)
Qi, X., Fuller, E., Wu, Q., Wu, Y., Zhang, C.Q.: Laplacian centrality: a new centrality measure for weighted networks. Inf. Sci. 194, 240–253 (2012)
Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Nonlinear Soft Matter Phys. Phys. Rev. E - Stat. 76, 036106 (2007)
Sariyuce, A.E., Kaya, K., Saule, E., Catalyiirek, U.V.: Incremental algorithms for closeness centrality. In: Proceedings - 2013 IEEE International Conference on Big Data, Big Data 2013, pp. 487–492 (2013)
Sarıyüce, A.E., Gedik, B., Jacques-Silva, G., Wu, K.L., Çatalyürek, Ü.V.: SONIC: streaming overlapping community detection. Data Min. Knowl. Discov. 30, 819–847 (2016)
Shah, D., Zaman, T.: Community detection in networks: the leader-follower algorithm. Sort 1050, 2 (2010)
Shang, J., Liu, L., Xie, F., Chen, Z., Miao, J., Fang, X., Wu, C.: A real-time detecting algorithm for tracking community structure of dynamic networks. In: 2012 18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining Workshops, SNAKDD, vol. 12 (2012)
Sun, H., Du, H., Huang, J., Li, Y., Sun, Z., He, L., Jia, X., Zhao, Z.: Leader-aware community detection in complex networks. Knowl. Inf. Syst. 1–30 (2019)
Wang, C.D., Lai, J.H., Yu, P.S.: Dynamic community detection in weighted graph streams. In: Proceedings of the 2013 SIAM International Conference on Data Mining, SDM 2013 (2013)
Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Comput. Surv. 45, 43 (2013)
Yakoubi, Z., Kanawati, R.: LICOD: a leader-driven algorithm for community detection in complex networks. Vietnam J. Comput. Sci. 1, 241–256 (2014)
Yun, S.Y., Lelarge, M., Proutiere, A.: Streaming, memory limited algorithms for community detection. In: Advances in Neural Information Processing Systems (2014)
Zhang, X., Zhu, J., Wang, Q., Zhao, H.: Identifying influential nodes in complex networks with community structure. Knowl.-Based Syst. 42, 74–84 (2013)
Zhao, Z., Wang, X., Zhang, W., Zhu, Z.: A community-based approach to identifying influential spreaders. Entropy 17, 2228–2252 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Cordeiro, M., Sarmento, R.P., Brazdil, P., Kimura, M., Gama, J. (2020). Identifying, Ranking and Tracking Community Leaders in Evolving Social Networks. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-030-36687-2_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-36687-2_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36686-5
Online ISBN: 978-3-030-36687-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)