Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Rigid Graph Alignment

  • Conference paper
  • First Online:
Complex Networks and Their Applications VIII (COMPLEX NETWORKS 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 881))

Included in the following conference series:

Abstract

An increasingly important class of networks is derived from physical systems that have a spatial basis. Specifically, nodes in the network have spatial coordinates associated with them, and conserved edges in two networks being aligned have correlated distance measures. An example of such a network is the human brain connectome – a network of co-activity of different regions of the brain, as observed in a functional MRI (fMRI). Here, the problem of identifying conserved patterns corresponds to the alignment of connectomes. In this context, one may structurally align the brains through co-registration to a common coordinate system. Alternately, one may align the networks, ignoring the structural basis of co-activity. In this paper, we formulate a novel problem – rigid graph alignment, which simultaneously aligns the network, as well as the underlying structure. We formally specify the problem and present a method based on expectation maximization, which alternately aligns the network and the structure via rigid body transformations. We demonstrate that our method significantly improves the quality of network alignment in synthetic graphs. We also apply rigid graph alignment to functional brain networks derived from 20 subjects drawn from the Human Connectome Project (HCP), and show over a two-fold increase in quality of alignment. Our results are broadly applicable to other applications and abstracted networks that can be embedded in metric spaces – e.g., through spectral embeddings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bayati, M., Gleich, D.F., Saberi, A., Wang, Y.: Message-passing algorithms for sparse network alignment. ACM Trans. Knowl. Discov. Data 7(1), 3:1–3:31 (2013). http://doi.acm.org/10.1145/2435209.2435212

    Article  Google Scholar 

  2. Berg, J., Lässig, M.: Local graph alignment and motif search in biological networks. Proc. Natl. Acad. Sci. 101(41), 14689–14694 (2004). https://www.pnas.org/content/101/41/14689

    Article  Google Scholar 

  3. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000)

    Article  Google Scholar 

  4. Besl, P., McKay, H.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992)

    Article  Google Scholar 

  5. Bouaziz, S., Tagliasacchi, A., Pauly, M.: Sparse iterative closest point. In: Proceedings of the Eleventh Eurographics/ACMSIGGRAPH Symposium on Geometry Processing, SGP 2013, pp. 113–123. Eurographics Association, Aire-la-Ville (2013). http://dx.doi.org/10.1111/cgf.12178

  6. Ciriello, G., Mina, M., Guzzi, P.H., Cannataro, M., Guerra, C.: Alignnemo: a local network alignment method to integrate homology and topology. PLOS ONE 7(6), 1–14 (2012)

    Article  Google Scholar 

  7. Conroy, B.R., Ramadge, P.J.: The grouped two-sided orthogonal procrustes problem. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3688–3691, May 2011

    Google Scholar 

  8. Eggert, D., Lorusso, A., Fisher, R.: Estimating 3-D rigid body transformations: a comparison of four major algorithms. Mach. Vis. Appl. 9(5), 272–290 (1997)

    Article  Google Scholar 

  9. Emmert-Streib, F., Dehmer, M., Shi, Y.: Fifty years of graph matching, network alignment and network comparison. Inf. Sci. 346(C), 180–197 (2016). https://doi.org/10.1016/j.ins.2016.01.074

    Article  MathSciNet  Google Scholar 

  10. Essen, D.C.V., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K.: The WU-Minn human connectome project: an overview. NeuroImage 80, 62–79 (2013)

    Article  Google Scholar 

  11. Finn, E.S., Shen, X., Scheinost, D., Rosenberg, M.D., Huang, J., Chun, M.M., Papademetris, X., Constable, R.T.: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nature Neurosci. 18(11), 1664–1671 (2015)

    Article  Google Scholar 

  12. Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17(2), 825–841 (2002)

    Article  Google Scholar 

  13. Kabsch, W.: A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. Sect. A 32(5), 922–923 (1976)

    Article  Google Scholar 

  14. Kuchaiev, O., Milenković, T., Memišević, V., Hayes, W., Pržulj, N.: Topological network alignment uncovers biological function and phylogeny. J. Roy. Soc. Interface (2010). http://rsif.royalsocietypublishing.org/content/early/2010/03/24/rsif.2010.0063

  15. Murphy, K., Birn, R.M., Handwerker, D.A., Jones, T.B., Bandettini, P.A.: The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage 44(3), 893–905 (2009)

    Article  Google Scholar 

  16. Patro, R., Kingsford, C.: Global network alignment using multiscale spectral signatures. Bioinformatics 28(23), 3105–3114 (2012)

    Article  Google Scholar 

  17. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proceedings of the 3DIM 2001, October 2001

    Google Scholar 

  18. Sabata, B., Aggarwal, J.: Estimation of motion from a pair of range images: a review. CVGIP: Image Underst. 54(3), 309–324 (1991). http://www.sciencedirect.com/science/article/pii/104996609190032K

    Article  Google Scholar 

  19. Schönemann, P.H.: A generalized solution of the orthogonal procrustes problem. Psychometrika 31(1), 1–10 (1966)

    Article  MathSciNet  Google Scholar 

  20. Singh, R., Xu, J., Berger, B.: Pairwise global alignment of protein interaction networks by matching neighborhood topology. In: Proceedings of the 11th Annual International Conference on Research in Computational Molecular Biology, RECOMB 2007, pp. 16–31. Springer, Heidelberg (2007)

    Google Scholar 

  21. Smith, S.M., Beckmann, C.F., Andersson, J., Auerbach, E.J., Bijsterbosch, J., Douaud, G., Duff, E., Feinberg, D.A., Griffanti, L., Harms, M.P., Kelly, M., Laumann, T., Miller, K.L., Moeller, S., Petersen, S., Power, J., Salimi-Khorshidi, G., Snyder, A.Z., Vu, A.T., Woolrich, M.W., Xu, J., Yacoub, E., Uğurbil, K., Essen, D.C.V., Glasser, M.F.: Resting-state fMRI in the human connectome project. NeuroImage 80, 144–168 (2013)

    Article  Google Scholar 

  22. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)

    Article  Google Scholar 

  23. Sussenguth, E.H.: A graph-theoretic algorithm for matching chemical structures. J. Chem. Documentation 5(1), 36–43 (1965)

    Article  Google Scholar 

  24. Umeyama, S.: An eigendecomposition approach to weighted graph matching problems. IEEE Trans. Pattern Anal. Mach. Intell. 10(5), 695–703 (1988)

    Article  Google Scholar 

Download references

Acknowledgement

The authors are supported by the National Science Foundation grants CCF-1149756 and IIS-1546488.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Ravindra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ravindra, V., Nassar, H., Gleich, D.F., Grama, A. (2020). Rigid Graph Alignment. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-030-36687-2_52

Download citation

Publish with us

Policies and ethics