Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Only Image Cosine Embedding for Few-Shot Learning

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11954))

Included in the following conference series:

  • 1940 Accesses

Abstract

Few-shot learning in computer vision is a very challenging task. Many approaches have been proposed to tackle the few-shot learning problem. Meta learning, a method of learning to learn, is introduced into few-shot learning problem and has achieved pretty good results. But there is still a very big gap between the machine and our human in the few-shot learning tasks. We think it’s because the existing methods do not make full use of global knowledge (similar to the priori knowledge of human understanding of images) thus lacking a world view of the task. In other words, they focus too much on local information and neglect the whole task. In this paper, we rethink about the few-shot learning problem, and propose that we should make full use of global knowledge. Seen data set is used to obtain a embedding function between images and feature vectors, the images are embedded onto a hypersphere in the manner of cosine embedding. By taking this embedding function as global knowledge, we train a classifier to classify the corresponding embedded vector of images. The experiment proved that our approach significantly outperforms both baseline models and previous state-of-the-art methods. It surpasses most existing methods in terms of flexibility, simplicity and accuracy. Codes are available at https://github.com/SongyiGao/OICEFFSL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C.F., Huang, J.B.: A closer look at few-shot classification. arXiv preprint arXiv:1904.04232 (2019)

  2. Cheny, Z., Fuy, Y., Zhang, Y., Jiang, Y.G., Xue, X., Sigal, L.: Multi-level semantic feature augmentation for one-shot learning. IEEE Trans. Image Process. 28(9), 4594–4605 (2019)

    Article  MathSciNet  Google Scholar 

  3. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1126–1135. JMLR. org (2017)

    Google Scholar 

  4. Gidaris, S., Komodakis, N.: Dynamic few-shot visual learning without forgetting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4367–4375 (2018)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  7. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  8. Li, X., Wang, W.: Learning discriminative features via weights-biased softmax loss. arXiv preprint arXiv:1904.11138 (2019)

  9. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  10. Maaten, L.v.d., Hinton, G.: Visualizing data using T-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    Google Scholar 

  11. Mishra, N., Rohaninejad, M., Chen, X., Abbeel, P.: A simple neural attentive meta-learner. arXiv preprint arXiv:1707.03141 (2017)

  12. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms. arXiv preprint arXiv:1803.02999 (2018)

  13. Qin, Y., et al.: Rethink and redesign meta learning. arXiv preprint arXiv:1812.04955 (2018)

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  16. Salimans, T., Kingma, D.P.: Weight normalization: a simple reparameterization to accelerate training of deep neural networks. In: Advances in Neural Information Processing Systems, pp. 901–909 (2016)

    Google Scholar 

  17. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems, pp. 4077–4087 (2017)

    Google Scholar 

  18. Sun, Q., Liu, Y., Chua, T.S., Schiele, B.: Meta-transfer learning for few-shot learning. arXiv preprint arXiv:1812.02391 (2018)

  19. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1199–1208 (2018)

    Google Scholar 

  20. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems, pp. 3630–3638 (2016)

    Google Scholar 

  21. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 dataset (2011)

    Google Scholar 

  22. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Songyi Gao or Weijie Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, S., Shen, W., Liu, Z., Zhu, A., Yu, Y. (2019). Only Image Cosine Embedding for Few-Shot Learning. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Lecture Notes in Computer Science(), vol 11954. Springer, Cham. https://doi.org/10.1007/978-3-030-36711-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36711-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36710-7

  • Online ISBN: 978-3-030-36711-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics