Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Watch and Ask: Video Question Generation

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11955))

Included in the following conference series:

Abstract

Question generation (QG) has been well studied in text and image but never been studied in video, which is popular multimedia in practice. In this paper, we propose a new task, video question generation. We adopt the encoder-decoder based framework to deal with this task. With the consideration that each video can be asked with more than one questions, and each question can belong to different types, we involve question type to guide the generation process. Specifically, a novel type-conditional temporal-spatial attention is proposed, which could capture required information of different types from video content at different time steps. Experiments show that our models outperform baseline and our type-conditional attention module captures the required information precisely. To best of our knowledge, we are the first to apply the end-to-end model on video question generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  2. Denkowski, M.J., Lavie, A.: Meteor universal: language specific translation evaluation for any target language. In: WMT@ACL, pp. 376–380 (2014)

    Google Scholar 

  3. Du, X., Shao, J., Cardie, C.: Learning to ask: neural question generation for reading comprehension. In: ACL, vol. 1, pp.1342–1352 (2017)

    Google Scholar 

  4. Fan, Z., Wei, Z., Li, P., Lan, Y., Huang, X.: A question type driven framework to diversify visual question generation. In: IJCAI, pp. 4048–4054 (2018)

    Google Scholar 

  5. Gao, J., Ge, R., Chen, K., Nevatia, R.: Motion-appearance co-memory networks for video question answering. In: CVPR, pp. 6576–6585 (2018)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  7. Jang, Y., Song, Y., Yu, Y., Kim, Y., Kim, G.: TGIF-QA: toward spatio-temporal reasoning in visual question answering. In: CVPR, pp. 1359–1367 (2017)

    Google Scholar 

  8. Kim, K., Heo, M., Choi, S., Zhang, B.: Deepstory: video story QA by deep embedded memory networks. In: IJCAI, pp. 2016–2022 (2017)

    Google Scholar 

  9. Li, Y., et al.: Visual question generation as dual task of visual question answering. In: CVPR, pp. 6116–6124 (2018)

    Google Scholar 

  10. Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. In: Text Summarization Branches Out (2004)

    Google Scholar 

  11. Maharaj, T., Ballas, N., Rohrbach, A., Courville, A.C., Pal, C.J.: A dataset and exploration of models for understanding video data through fill-in-the-blank question-answering. In: CVPR, pp. 7359–7368 (2017)

    Google Scholar 

  12. Mostafazadeh, N., Misra, I., Devlin, J., Mitchell, M., He, X., Vanderwende, L.: Generating natural questions about an image. In: ACL (2016)

    Google Scholar 

  13. Mun, J., Seo, P.H., Jung, I., Han, B.: Marioqa: answering questions by watching gameplay videos. In: ICCV, pp. 2886–2894 (2017)

    Google Scholar 

  14. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine translation. In: ACL, pp. 311–318. Association for Computational Linguistics (2002)

    Google Scholar 

  15. Skalban, Y.: Automatic generation of factual questions from video documentaries. Ph.D. thesis, University of Wolverhampton, UK (2013)

    Google Scholar 

  16. Tapaswi, M., Zhu, Y., Stiefelhagen, R., Torralba, A., Urtasun, R., Fidler, S.: Movieqa: understanding stories in movies through question-answering. In: CVPR, pp. 4631–4640 (2016)

    Google Scholar 

  17. Uehara, K., Tejero-de-Pablos, A., Ushiku, Y., Harada, T.: Visual question generation for class acquisition of unknown objects. In: ECCV, pp. 492–507 (2018)

    Google Scholar 

  18. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 6000–6010 (2017)

    Google Scholar 

  19. Xiong, C., Merity, S., Socher, R.: Dynamic memory networks for visual and textual question answering. In: ICML, pp. 2397–2406 (2016)

    Google Scholar 

  20. Yu, L., et al.: Mattnet: modular attention network for referring expression comprehension. In: CVPR, pp. 1307–1315 (2018)

    Google Scholar 

  21. Zhang, S., Qu, L., You, S., Yang, Z., Zhang, J.: Automatic generation of grounded visual questions. In: IJCAI, pp. 4235–4243 (2017)

    Google Scholar 

  22. Zhu, Y., Groth, O., Bernstein, M.S., Fei-Fei, L.: Visual7w: grounded question answering in images. In: CVPR, pp. 4995–5004 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenglei Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, S., Hu, S., Yan, B. (2019). Watch and Ask: Video Question Generation. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Lecture Notes in Computer Science(), vol 11955. Springer, Cham. https://doi.org/10.1007/978-3-030-36718-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36718-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36717-6

  • Online ISBN: 978-3-030-36718-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics