Abstract
Pedestrian parcel inspection is a common security measure in some public places like railway entrances. Automatic identification of the affiliation between pedestrians and parcels is an important task in an intelligent security inspection system. However, it is very challenging due to the high pedestrian volume in these places. In this paper, we propose a deep learning scheme for extracting pedestrian-parcel tuples from camera videos, which includes three modules, i.e. detection, interaction and re-identification of pedestrians and parcels. We first detect pedestrians and parcels in each frame, and then discriminate the affiliation between pedestrians and parcels by interaction behavior analysis, finally discard the redundant affiliations by re-identification of pedestrians and parcels. In the interaction module, we propose a lightweight interaction model for discriminating the affiliation between pedestrians and parcels in a single RGB image. Experiments on a video data at a subway entrance validate the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and F-Score, with implication for evaluation. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 345–359. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31865-1_25
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Henderson, P., Ferrari, V.: End-to-end training of object class detectors for mean average precision. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10115, pp. 198–213. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54193-8_13
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Lin, Y., et al.: Improving person re-identification by attribute and identity learning. Pattern Recogn. (2019)
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Luo, H., Gu, Y., Liao, X., Lai, S., Jiang, W.: Bags of tricks and a strong baseline for deep person re-identification. arXiv preprint arXiv:1903.07071 (2019)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)
Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems (NIPS) (2015)
Acknowledgment
This work was supported by National Science and Technology Major Project of China (grant 2018AAA0100800), and Opening Foundation of National Engineering Laboratory for Intelligent Video Analysis and Application.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, T., Zhang, X., Duan, F. (2019). A Deep Learning Scheme for Extracting Pedestrian-Parcel Tuples from Videos. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Communications in Computer and Information Science, vol 1142. Springer, Cham. https://doi.org/10.1007/978-3-030-36808-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-36808-1_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36807-4
Online ISBN: 978-3-030-36808-1
eBook Packages: Computer ScienceComputer Science (R0)