Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Deep Learning Scheme for Extracting Pedestrian-Parcel Tuples from Videos

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1142))

Included in the following conference series:

  • 2858 Accesses

Abstract

Pedestrian parcel inspection is a common security measure in some public places like railway entrances. Automatic identification of the affiliation between pedestrians and parcels is an important task in an intelligent security inspection system. However, it is very challenging due to the high pedestrian volume in these places. In this paper, we propose a deep learning scheme for extracting pedestrian-parcel tuples from camera videos, which includes three modules, i.e. detection, interaction and re-identification of pedestrians and parcels. We first detect pedestrians and parcels in each frame, and then discriminate the affiliation between pedestrians and parcels by interaction behavior analysis, finally discard the redundant affiliations by re-identification of pedestrians and parcels. In the interaction module, we propose a lightweight interaction model for discriminating the affiliation between pedestrians and parcels in a single RGB image. Experiments on a video data at a subway entrance validate the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  2. Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and F-Score, with implication for evaluation. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 345–359. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31865-1_25

    Chapter  Google Scholar 

  3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  4. Henderson, P., Ferrari, V.: End-to-end training of object class detectors for mean average precision. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10115, pp. 198–213. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54193-8_13

    Chapter  Google Scholar 

  5. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  6. Lin, Y., et al.: Improving person re-identification by attribute and identity learning. Pattern Recogn. (2019)

    Google Scholar 

  7. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  8. Luo, H., Gu, Y., Liao, X., Lai, S., Jiang, W.: Bags of tricks and a strong baseline for deep person re-identification. arXiv preprint arXiv:1903.07071 (2019)

  9. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  10. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  11. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  12. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems (NIPS) (2015)

    Google Scholar 

Download references

Acknowledgment

This work was supported by National Science and Technology Major Project of China (grant 2018AAA0100800), and Opening Foundation of National Engineering Laboratory for Intelligent Video Analysis and Application.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqing Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, T., Zhang, X., Duan, F. (2019). A Deep Learning Scheme for Extracting Pedestrian-Parcel Tuples from Videos. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Communications in Computer and Information Science, vol 1142. Springer, Cham. https://doi.org/10.1007/978-3-030-36808-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36808-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36807-4

  • Online ISBN: 978-3-030-36808-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics