Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

State of the Art Survey of Deep Learning and Machine Learning Models for Smart Cities and Urban Sustainability

  • Conference paper
  • First Online:
Engineering for Sustainable Future (INTER-ACADEMIA 2019)

Abstract

Deep learning (DL) and machine learning (ML) methods have recently contributed to the advancement of models in the various aspects of prediction, planning, and uncertainty analysis of smart cities and urban development. This paper presents the state of the art of DL and ML methods used in this realm. Through a novel taxonomy, the advances in model development and new application domains in urban sustainability and smart cities are presented. Findings reveal that five DL and ML methods have been most applied to address the different aspects of smart cities. These are artificial neural networks; support vector machines; decision trees; ensembles, Bayesians, hybrids, and neuro-fuzzy; and deep learning. It is also disclosed that energy, health, and urban transport are the main domains of smart cities that DL and ML methods contributed in to address their problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Haase, D., et al. Global Urbanization. In: The Urban Planet: Knowledge Towards Sustainable Cities, vol. 19 (2018)

    Google Scholar 

  2. Galea, S., Ettman, C.K., Vlahov, D.: The Present and Future of Cities. Urban Health, p. 1 (2019)

    Chapter  Google Scholar 

  3. Wang, S.J., Moriarty, P.: Urban health and well-being challenges. In: Big Data for Urban Sustainability, pp. 23–43. Springer (2018)

    Google Scholar 

  4. Nosratabadi, S., et al.: Sustainable business models: a review. Sustainability 11(6), 1663 (2019)

    Article  Google Scholar 

  5. Alavi, A.H., et al.: Internet of Things-enabled smart cities: state-of-the-art and future trends. Measurement 129, 589–606 (2018)

    Article  Google Scholar 

  6. Dineva, A., et al.: Review of soft computing models in design and control of rotating electrical machines. Energies 12(6) (2019)

    Article  Google Scholar 

  7. Ghalandari, M., et al.: Investigation of submerged structures’ flexibility on sloshing frequency using a boundary element method and finite element analysis. Eng. Appl. Comput. Fluid Mech. 13(1), 519–528 (2019)

    Google Scholar 

  8. Qasem, S.N., et al.: Estimating daily dew point temperature using machine learning algorithms. Water (Switzerland) 11(3) (2019)

    Article  Google Scholar 

  9. Taherei Ghazvinei, P., et al.: Sugarcane growth prediction based on meteorological parameters using extreme learning machine and artificial neural network. Eng. Appl. Comput. Fluid Mech. 12(1), 738–749 (2018)

    Google Scholar 

  10. Vargas, R., Mosavi, A., Ruiz, R.: Deep learning: a review. In: Advances in Intelligent Systems and Computing (2017)

    Google Scholar 

  11. Mosavi, A., Lopez, A., Várkonyi-Kóczy, A.R.: Industrial applications of big data: state of the art survey. In: Luca, D., Sirghi, L., Costin, C. (eds.), pp. 225–232. Springer (2018)

    Google Scholar 

  12. Mosavi, A., Ozturk, P., Chau, K.W.: Flood prediction using machine learning models: literature review. Water (Switzerland) 10(11) (2018)

    Article  Google Scholar 

  13. Mosavi, A,. Rabczuk, T.: Learning and intelligent optimization for material design innovation. In: Kvasov, D.E., et al. (eds.), pp. 358–363. Springer (2017)

    Google Scholar 

  14. Mosavi, A., Várkonyi-Kóczy, A.R.: Integration of machine learning and optimization for robot learning. In: Jablonski, R., Szewczyk, R. (eds.), pp. 349–355. Springer (2017)

    Google Scholar 

  15. Torabi, M., et al.: A Hybrid clustering and classification technique for forecasting short-term energy consumption. Environ. Prog. Sustain. Energy 38(1), 66–76 (2019)

    Article  Google Scholar 

  16. Audu, A.R.A., et al.: An intelligent predictive analytics system for transportation analytics on open data towards the development of a smart city. In: Hussain, F.K., Barolli, L., Ikeda, M. (eds.) pp. 224–236. Springer (2020)

    Google Scholar 

  17. Rebelo, F., Noriega, P., Oliveira, T.: Evaluation of the concept of a smart city gamification from a user centered design perspective. In: Soares, M.M., Rebelo, F. (eds.), pp. 207–219. Springer (2020)

    Google Scholar 

  18. Ruzina, E.I.: From information city to smart city: Russian experience of state entrepreneurship. In: Solovev, D.B. (ed.), pp. 419–430. Springer Science and Business Media Deutschland GmbH (2020)

    Google Scholar 

  19. Sharifi, A.: A critical review of selected smart city assessment tools and indicator sets. J. Clean. Prod. 233, 1269–1283 (2019)

    Article  Google Scholar 

  20. Valdeolmillos, D., Mezquita, Y., Ludeiro, A.R.: Sensing as a service: An architecture proposal for big data environments in smart cities. In: Novais, P., et al. (eds.), pp. 97–104. Springer (2020)

    Google Scholar 

  21. Wataya, E., Shaw, R.: Measuring the value and the role of soft assets in smart city development. Cities 94, 106–115 (2019)

    Article  Google Scholar 

  22. Aram, F., et al.: Design and validation of a computational program for analysing mental maps: Aram mental map analyzer. Sustainability (Switzerland) 11(14) (2019)

    Article  Google Scholar 

  23. Asadi, E., et al.: Groundwater quality assessment for drinking and agricultural purposes in Tabriz Aquifer, Iran (2019)

    Google Scholar 

  24. Asghar, M.Z., Subhan, F., Imran, M., Kundi, F.M., Shamshirband, S., Mosavi, A., Csiba, P., Várkonyi-Kóczy, A.R.: Performance evaluation of supervised machine learning techniques for efficient detection of emotions from online content (2019), 2019080019. https://doi.org/10.20944/preprints201908.0019.v1

  25. Bemani, A., Baghban, A., Shamshirband, S., Mosavi, A., Csiba, P., Várkonyi-Kóczy, A.R.: Applying ANN, ANFIS, and LSSVM models for estimation of acid solvent solubility in supercritical CO2. (2019), 2019060055. https://doi.org/10.20944/preprints201906.0055.v2

  26. Choubin, B., et al.: Snow avalanche hazard prediction using machine learning methods. J. Hydrol. 577 (2019)

    Article  Google Scholar 

  27. Choubin, B., et al.: An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci. Total Environ. 651, 2087–2096 (2019)

    Article  Google Scholar 

  28. Dehghani, M., et al.: Prediction of hydropower generation using Grey wolf optimization adaptive neuro-fuzzy inference system. Energies 12(2) (2019)

    Article  Google Scholar 

  29. Dineva, A., et al.: Multi-label classification for fault diagnosis of rotating electrical machines (2019)

    Google Scholar 

  30. Farzaneh-Gord, M., et al.: Numerical simulation of pressure pulsation effects of a snubber in a CNG station for increasing measurement accuracy. Eng. Appl. Comput. Fluid Mech. 13(1), 642–663 (2019)

    Google Scholar 

  31. Ghalandari, M., et al.: Flutter speed estimation using presented differential quadrature method formulation. Eng. Appl. Comput. Fluid Mech. 13(1), 804–810 (2019)

    Google Scholar 

  32. Karballaeezadeh, N., et al.: Prediction of remaining service life of pavement using an optimized support vector machine (case study of Semnan-Firuzkuh road). Eng. Appl. Comput. Fluid Mech. 13(1), 188–198 (2019)

    Google Scholar 

  33. Menad, N.A., et al.: Modeling temperature dependency of oil - water relative permeability in thermal enhanced oil recovery processes using group method of data handling and gene expression programming. Eng. Appl. Comput. Fluid Mech. 13(1), 724–743 (2019)

    MathSciNet  Google Scholar 

  34. Mohammadzadeh, S., et al.: Prediction of compression index of fine-grained soils using a gene expression programming model. Infrastructures 4(2), 26 (2019)

    Article  Google Scholar 

  35. Mosavi, A., Edalatifar, M.: A hybrid neuro-fuzzy algorithm for prediction of reference evapotranspiration. in Lecture Notes in Networks and Systems, pp. 235–243. Springer (2019)

    Google Scholar 

  36. Mosavi, A., Rabczuk, T., Várkonyi-Kóczy, A.R.: Reviewing the novel machine learning tools for materials design. In: Luca, D., Sirghi, L., Costin, C. (eds.), pp. 50–58. Springer (2018)

    Google Scholar 

  37. Mosavi, A., et al.: State of the art of machine learning models in energy systems, a systematic review. Energies 12(7) (2019)

    Article  Google Scholar 

  38. Mosavi, A., et al.: Prediction of multi-inputs bubble column reactor using a novel hybrid model of computational fluid dynamics and machine learning. Eng. Appl. Comput. Fluid Mech. 13(1), 482–492 (2019)

    Google Scholar 

  39. Nosratabadi, S., et al.: Sustainable business models: a review. Sustainability (Switzerland) 11(6) (2019)

    Article  Google Scholar 

  40. Rezakazemi, M., Mosavi, A., Shirazian, S.: ANFIS pattern for molecular membranes separation optimization. J. Mol. Liq. 274, 470–476 (2019)

    Article  Google Scholar 

  41. Riahi-Madvar, H., et al.: Comparative analysis of soft computing techniques RBF, MLP, and ANFIS with MLR and MNLR for predicting grade-control scour hole geometry. Eng. Appl. Comput. Fluid Mech. 13(1), 529–550 (2019)

    Google Scholar 

  42. Shabani, S., Samadianfard, S., Taghi Sattari, M., Shamshirband, S., Mosavi, A., Kmet, T., Várkonyi-Kóczy, A.R.: Modeling daily pan evaporation in humid cli-mates using gaussian process regression (2019), 2019070351. https://doi.org/10.20944/preprints201907.0351.v1

  43. Shamshirband, S., Hadipoor, M., Baghban, A., Mosavi, A., Bukor J., Várkonyi-Kóczy, A.R.: Developing an ANFIS-PSO model to predict mercury emissions in combustion flue gases (2019), 2019070165. https://doi.org/10.20944/preprints201907.0165.v1

  44. Shamshirband, S., et al.: Ensemble models with uncertainty analysis for multi-day ahead forecasting of chlorophyll a concentration in coastal waters. Eng. App. Comput. Fluid Mech. 13(1), 91–101 (2019)

    Google Scholar 

  45. Shamshirband, S., Mosavi, A., Rabczuk, T.: Particle swarm optimization model to predict scour depth around bridge pier (2019). arXiv:1906.08863

  46. Torabi, M., et al.: A hybrid machine learning approach for daily prediction of solar radiation. In: Lecture Notes in Networks and Systems, pp. 266–274. Springer (2019)

    Google Scholar 

  47. de Souza, J.T., et al.: Data mining and machine learning to promote smart cities: a systematic review from 2000 to 2018. Sustainability (Switzerland) 11(4) (2019)

    Article  Google Scholar 

  48. Muhammed, T., et al.: UbeHealth: A personalized ubiquitous cloud and edge-enabled networked healthcare system for smart cities. IEEE Access 6, 32258–32285 (2018)

    Article  Google Scholar 

  49. Nagy, A.M., Simon, V.: Survey on traffic prediction in smart cities. Pervasive Mobile Comput. 50, 148–163 (2018)

    Article  Google Scholar 

  50. O’Dwyer, E., et al.: Smart energy systems for sustainable smart cities: current developments, trends and future directions. Appl. Energy 581–597 (2019)

    Article  Google Scholar 

  51. Soomro, K., et al.: Smart city big data analytics: An advanced review. In: Data Mining and Knowledge Discovery. Wiley Interdisciplinary Reviews (2019)

    Google Scholar 

  52. Usman, M., et al.: A survey on big multimedia data processing and management in smart cities. ACM Comput. Surv. 52(3) (2019)

    Article  Google Scholar 

  53. Zhao, L., et al.: Routing for crowd management in smart cities: A deep reinforcement learning perspective. IEEE Commun. Mag. 57(4), 88–93 (2019)

    Article  Google Scholar 

  54. Aram, F., et al.: Design and validation of a computational program for analysing mental maps: aram mental map analyzer. Sustainability 11(14), 3790 (2019)

    Article  Google Scholar 

  55. Ullah, I., et al.: Smart lightning detection system for smart-city infrastructure using artificial neural network. Wirel. Pers. Commun. 106(4), 1743–1766 (2019)

    Article  Google Scholar 

  56. Yuan, Z., Wang, W., Fan, X.: Back propagation neural network clustering architecture for stability enhancement and harmonic suppression in wind turbines for smart cities. Comput. Electr. Eng. 74, 105–116 (2019)

    Article  Google Scholar 

  57. Rojek, I., Studzinski, J.: Detection and localization of water leaks in water nets supported by an ICT system with artificial intelligence methods as away forward for smart cities. Sustainability (Switzerland) 11(2) (2019)

    Article  Google Scholar 

  58. Pan, X., et al.: Prediction of network traffic of smart cities based on DE-BP neural network. IEEE Access 7, 55807–55816 (2019)

    Article  Google Scholar 

  59. Vlahogianni, E.I., et al.: A real-time parking prediction system for smart cities. J. Intell. Trans. Syst. Technol. Plan. Oper. 20(2), 192–204 (2016)

    Article  Google Scholar 

  60. Livingston, S.J., et al.: A hybrid approach for water utilization in smart cities using machine learning techniques. Int. J. Innov. Technol. Explor. Eng. 8(6), 488–493 (2019)

    Google Scholar 

  61. Chen, L., Zhang, H.: Evaluation of green smart cities in china based on entropy weight-cloud model. Xitong Fangzhen Xuebao/J Syst Simul. 31(1), 136–144 (2019)

    Google Scholar 

  62. Chui, K.T., Lytras, M.D., Visvizi, A.: Energy sustainability in smart cities: artificial intelligence, smart monitoring, and optimization of energy consumption. Energies 11(11) (2018)

    Article  Google Scholar 

  63. Aborokbah, M.M., et al.: Adaptive context aware decision computing paradigm for intensive health care delivery in smart cities—A case analysis. Sustain. Cities Soc. 41, 919–924 (2018)

    Article  Google Scholar 

  64. Muhammad, G., et al.: A facial-expression monitoring system for improved healthcare in smart cities. IEEE Access 5, 10871–10881 (2017)

    Article  Google Scholar 

  65. Ilapakurti, A., et al.: Adaptive edge analytics for creating memorable customer experience and venue brand engagement, a scented case for Smart Cities. Institute of Electrical and Electronics Engineers Inc. (2018)

    Google Scholar 

  66. Orlowski, C., et al.: Decision processes based on IoT data for sustainable smart cities. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 136–146. Springer (2018)

    Google Scholar 

  67. Mei, H., Poslad, S., Du, S.: A game-theory based incentive framework for an intelligent traffic system as part of a smart city initiative. Sensors (Switzerland) 17(12) (2017)

    Article  Google Scholar 

  68. Vuppalapati, J.S., et al.: Smart dairies-enablement of smart city at gross root level. Institute of Electrical and Electronics Engineers Inc. (2017)

    Google Scholar 

  69. Nguyen, T.A., et al.: Toward a sustainable city of tomorrow: a hybrid Markov-Cellular Automata modeling for urban landscape evolution in the Hanoi city (Vietnam) during 1990–2030. Environ. Dev. Sustain. 21(1), 429–446 (2019)

    Article  Google Scholar 

  70. Taveres-Cachat, E., et al.: Responsive building envelope concepts in zero emission neighborhoods and smart cities-a roadmap to implementation. Build. Environ. 149, 446–457 (2019)

    Article  Google Scholar 

  71. Ju, J., Liu, L., Feng, Y.: Citizen-centered big data analysis-driven governance intelligence framework for smart cities. Telecommun. Policy 42(10), 881–896 (2018)

    Article  Google Scholar 

  72. Tan, Y., et al.: Adaptive neuro-fuzzy inference system approach for urban sustainability assessment: a China case study. Sustain. Dev. 26(6), 749–764 (2018)

    Article  Google Scholar 

  73. Sajjad, M., et al.: Leukocytes classification and segmentation in microscopic blood smear: a resource-aware healthcare service in smart cities. IEEE Access 5, 3475–3489 (2017)

    Article  Google Scholar 

  74. Luo, H., et al.: A short-term energy prediction system based on edge computing for smart city. Future Gener. Comput. Syst. 101, 444–457 (2019)

    Article  Google Scholar 

  75. Vázquez-Canteli, J.R., et al.: Fusing TensorFlow with building energy simulation for intelligent energy management in smart cities. Sustain. Cities Soc. 45, 243–257 (2019)

    Article  Google Scholar 

  76. Baba, M., et al.: A sensor network approach for violence detection in smart cities using deep learning. Sensors (Switzerland) 19(7) (2019)

    Article  Google Scholar 

  77. Reddy, D.V.S., Mehta, R.V.K.: Smart traffic management system for smart cities using reinforcement learning algorithm. Int. J. Recent Technol. Eng. 7(6), 12–15 (2019)

    Google Scholar 

  78. Obinikpo, A.A., Kantarci, B.: Big sensed data meets deep learning for smarter health care in smart cities. J. Sens. Actuator Netw. 6(4) (2017)

    Article  Google Scholar 

  79. Madu, C.N., Kuei, C.H., Lee, P.: Urban sustainability management: A deep learning perspective. Sustain. Cities Soc. 30, 1–17 (2017)

    Article  Google Scholar 

  80. Ardabili, S., Mosavi, A., Mahmoudi, Gundoshmian, T.M., Nosratabadi, S., Varkonyi-Koczy, A.: Modelling temperature variation of mushroom growing hall using artificial neural networks (2019)

    Google Scholar 

  81. Gundoshmian, T.M., Ardabili, S., Mosavi, A., Varkonyi-Koczy, A., Prediction of combine harvester performance using hybrid machine learning modeling and response surface methodology (2019)

    Google Scholar 

  82. Ardabili, S., Mosavi, A., Varkonyi-Koczy, A.: Systematic review of deep learning and machine learning models in biofuels research (2019)

    Google Scholar 

  83. Ardabili, S., Mosavi, A., Varkonyi-Koczy, A., Advances in machine learning model-ing reviewing hybrid and ensemble methods (2019)

    Google Scholar 

  84. Ardabili, S., Mosavi, A., Varkonyi-Koczy, A.: Building Energy information: demand and consumption prediction with Machine Learning models for sustainable and smart cities (2019)

    Google Scholar 

  85. Ardabili, S., Mosavi, A., Dehghani, M., Varkonyi-Koczy, A.: Deep learning and machine learning in hydrological processes climate change and earth systems a systematic review (2019)

    Google Scholar 

  86. Mohammadzadeh D., Karballaeezadeh, N., Mohemmi, M., Mosavi, A., Várkonyi-Kóczy A.: Urban train soil-structure interaction modeling and analysis (2019)

    Google Scholar 

  87. Mosavi, A., Ardabili, S., Varkonyi-Koczy, A., List of deep learning models (2019)

    Google Scholar 

  88. Nosratabadi, S., Mosavi, A., Keivani, R., Ardabili, S., Aram, F.: State of the art survey of deep learning and machine learning models for smart cities and urban sustainability (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Mosavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nosratabadi, S., Mosavi, A., Keivani, R., Ardabili, S., Aram, F. (2020). State of the Art Survey of Deep Learning and Machine Learning Models for Smart Cities and Urban Sustainability. In: Várkonyi-Kóczy, A. (eds) Engineering for Sustainable Future. INTER-ACADEMIA 2019. Lecture Notes in Networks and Systems, vol 101. Springer, Cham. https://doi.org/10.1007/978-3-030-36841-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36841-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36840-1

  • Online ISBN: 978-3-030-36841-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics