Abstract
Artificial neural network (ANN) introduced in the 1950s, is a machine learning framework inspired by the functioning of human neurons. However, for a long time the ANN remained inadequate in solving real problems, because of - the problems of overfitting and vanishing gradient while training a deep architecture, dearth of computation power, and non-availability of enough data for training the framework. This concept has lately re-emerged, in the form of Deep Learning (DL) which initially developed for computer vision and became immensely popular in several other domains. It gained traction in late 2012, when a DL approach i.e. convolutional neural network won in the ImageNet Classification – an acclaimed worldwide computer vision competition. Thereafter, researchers in practically every domain, including medical imaging, started vigorously contributing in the massively progressing field of DL. The success of DL methods can be owed to the availability of data, boosted computation power provided by the existing graphics processing units (GPUs), and ground-breaking training algorithms. In this paper, we have overviewed the area of DL in medical imaging, including (1) machine learning and DL basics, (2) cause of power of DL, (3) common DL models, (4) their applications to medical imaging and (5) challenges and future work in this field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Murphy, K.P.: Machine Learning: A Probabilistic Perspective, 1st edn., p. 25. The MIT Press, Cambridge (2012)
Wang, F., Shen, D., Yan, P., Suzuki, K. (eds.): MLMI 2012. LNCS, vol. 7588. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35428-1
Shen, D., Wu, G., Zhang, D., Suzuki, K., Wang, F., Yan, P.: Machine learning in medical imaging. Comput. Med. Imaging Graph. 41, 1–2 (2015)
Rana, B., et al.: Graph-theory-based spectral feature selection for computer aided diagnosis of Parkinson’s disease using T 1-weighted MRI. Int. J. Imaging Syst. Technol. 25(3), 245–255 (2015)
Suzuki, K., Zhou, L., Wang, Q.: Machine learning in medical imaging. Pattern Recognit. 63, 465–467 (2017)
El-Baz, A., Gimel’farb, G., Suzuki, K.: Machine learning applications in medical image analysis. Comput. Math. Methods Med. 2017, 2361061 (2017)
Rana, B., et al.: Relevant 3D local binary pattern based features from fused feature descriptor for differential diagnosis of Parkinson’s disease using structural MRI. Biomed. Signal Process. Control 34, 134–143 (2017)
Juneja, A., Rana, B., Agrawal, R.K.: fMRI based computer aided diagnosis of schizophrenia using fuzzy kernel feature extraction and hybrid feature selection. Multimed. Tools Appl. 77(3), 3963–3989 (2018)
Juneja, A., Rana, B., Agrawal, R.K.: A novel fuzzy rough selection of non-linearly extracted features for schizophrenia diagnosis using fMRI. Comput. Methods Programs Biomed. 155, 139–152 (2018)
Suzuki, K.: Computational Intelligence in Biomedical Imaging. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-7245-2
Shiraishi, J., Li, Q., Suzuki, K., Engelmann, R., Doi, K.: Computer aided diagnostic scheme for the detection of lung nodules on chest radiographs: localized search method based on anatomical classification. Med. Phys. 33(7), 2642–2653 (2006)
Coppini, G., Diciotti, S., Falchini, M., Villari, N., Valli, G.: Neural networks for computer-aided diagnosis: detection of lung nodules in chest radiograms. IEEE Trans. Inf. Technol. Biomed. 7(4), 344–357 (2003)
Hardie, R.C., Rogers, S.K., Wilson, T., Rogers, A.: Performance analysis of a new computer aided detection system for identifying lung nodules on chest radiographs. Med. Image Anal. 12(3), 240–258 (2008)
Chen, S., Suzuki, K., MacMahon, H.: A computer-aided diagnostic scheme for lung nodule detection in chest radiographs by means of two-stage nodule-enhancement with support vector classification. Med. Phys. 38, 1844–1858 (2011)
Arimura, H., Katsuragawa, S., Suzuki, K., et al.: Computerized scheme for automated detection of lung nodules in low-dose computed tomography images for lung cancer screening. Acad. Radiol. 11(6), 617–629 (2004)
Armato III, S.G., Giger, M.L., MacMahon, H.: Automated detection of lung nodules in CT scans: preliminary results. Med. Phys. 28(8), 1552–1561 (2001)
Ye, X., Lin, X., Dehmeshki, J., Slabaugh, G., Beddoe, G.: Shape-based computer-aided detection of lung nodules in thoracic CT images. IEEE Trans. Biomed. Eng. 56(7), 1810–1820 (2009)
Way, T.W., Sahiner, B., Chan, H.P., et al.: Computer-aided diagnosis of pulmonary nodules on CT scans: improvement of classification performance with nodule surface features. Med. Phys. 36(7), 3086–3098 (2009)
Aoyama, M., Li, Q., Katsuragawa, S., MacMahon, H., Doi, K.: Automated computerized scheme for distinction between benign and malignant solitary pulmonary nodules on chest images. Med. Phys. 29(5), 701–708 (2002)
Wu, Y., Doi, K., Giger, M.L., Nishikawa, R.M.: Computerized detection of clustered microcalcifications in digital mammograms: applications of artificial neural networks. Med. Phys. 19(3), 555–560 (1992)
El-Naqa, I., Yang, Y., Wernick, M.N., Galatsanos, N.P., Nishikawa, R.M.: A support vector machine approach for detection of microcalcifications. IEEE Trans. Med. Imaging 21(12), 1552–1563 (2002)
Yu, S.N., Li, K.Y., Huang, Y.K.: Detection of microcalcifications in digital mammograms using wavelet filter and Markov random field model. Comput. Med. Imaging Graph. 30(3), 163–173 (2006)
Ge, J., Sahiner, B., Hadjiiski, L.M., et al.: Computer aided detection of clusters of microcalcifications on full field digital mammograms. Med. Phys. 33(8), 2975–2988 (2006)
Wu, Y.T., Wei, J., Hadjiiski, L.M., et al.: Bilateral analysis based false positive reduction for computer-aided mass detection. Med. Phys. 34(8), 3334–3344 (2007)
Huo, Z., Giger, M.L., Vyborny, C.J., Wolverton, D.E., Schmidt, R.A., Doi, K.: Automated computerized classification of malignant and benign masses on digitized mammograms. Acad. Radiol. 5(3), 155–168 (1998)
Delogu, P., Evelina Fantacci, M., Kasae, P., Retico, A.: Characterization of mammographic masses using a gradient-based segmentation algorithm and a neural classifier. Comput. Biol. Med. 37(10), 1479–1491 (2007)
Shi, J., Sahiner, B., Chan, H.P., et al.: Characterization of mammographic masses based on level set segmentation with new image features and patient information. Med. Phys. 35(1), 280–290 (2008)
Aggarwal, N., Rana, B., Agrawal, R.K.: Role of surfacelet transform in diagnosing Alzheimer’s disease. Multidimens. Syst. Signal Process. 30(4), 1839–1858 (2019)
Verma, H., Agrawal, R.K., Sharan, A.: An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation. Appl. Soft Comput. 46, 543–557 (2016)
Suzuki, K.: Machine learning in computer-aided diagnosis of the thorax and colon in CT: a survey. IEICE Trans. Inf. Syst. E96-D(4), 772–783 (2013)
Suzuki, K.: Machine Learning in Computer-Aided Diagnosis: Medical Imaging Intelligence and Analysis. IGI Global, Hershey (2012)
Byvatov, E., Fechner, U., Sadowski, J., Schneider, G.: Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J. Chem. Inf. Comput. Sci. 43, 1882–1889 (2003)
Tong, S., Chang, E.: Support vector machine active learning for image retrieval. In: Proceedings of the 9th ACM International Conference on Multimedia, Ottawa, Canada, 5 October–30 September 2001, p. 107. ACM, New York (2001)
Arbib, M.A.: The Handbook of Brain Theory and Neural Networks, 2nd edn. The MIT Press, Boston (2003)
Haykin, S.S.: Neural Networks: A Comprehensive Foundation, pp. 107–116. Macmillan College Publishing, New York (1994)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Basaia, S., et al.: Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks. NeuroImage Clin. 21, 101645 (2019). Alzheimer’s disease neuroimaging initiative
Chen, L., Shi, J., Peng, B., Dai, Y.: Computer-aided diagnosis of Parkinson’s disease based on the stacked deep polynomial networks ensemble learning framework. Sheng wu yi xue gong cheng xue za zhi = J. Biomed. Eng. = Shengwu yixue gongchengxue zazhi 35(6), 928–934 (2018)
Zeng, L.L., et al.: Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI. EBioMedicine 30, 74–85 (2018)
Milletari, F., et al.: Hough-CNN: deep learning for segmentation of deep brain regions in MRI and ultrasound. Comput. Vis. Image Understand. 1(164), 92–102 (2017)
Fukushima, K.: Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)
Suzuki, K.: Overview of deep learning in medical imaging. Radiol. Phys. Technol. 10(3), 257–273 (2017)
Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., Khudanpur, S.: Recurrent neural network based language model. In: Proceedings of the 11th Annual Conference of the International Speech Communication Association (INTERSPEECH 2010), Makuhari, Japan, 26–30 September 2010. International Speech Communication Association, pp. 1045–1048 (2010)
Gregor, K., Danihelka, I., Graves, A., Rezende, D.J., Wierstra, D.: DRAW: a recurrent neural network for image generation. In: Proceedings of the 32nd International Conference on Machine Learning (ICML 2015), Lille, France, 6–11 July 2015, pp. 1462–1471. JMLR (2015)
Stollenga, M.F., Byeon, W., Liwicki, M., Schmidhuber, J.: Parallel multi-dimensional LSTM, with application to fast biomedical volumetric image segmentation. In: Advances in Neural Information Processing Systems, pp. 2998–3006 (2015)
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)
Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Advances in Neural Information Processing Systems, pp. 153–160 (2007)
Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
Wang, D., Khosla, A., Gargeya, R., Irshad, H., Beck, A.H.: Deep learning for identifying metastatic breast cancer. arXiv preprint: arXiv:1606.05718, 18 June 2016
Hua, K.L., Hsu, C.H., Hidayati, S.C., Cheng, W.H., Chen, Y.J.: Computer-aided classification of lung nodules on computed tomography images via deep learning technique. OncoTargets Ther. 8, 2015–2022 (2015)
Kumar, D., Wong, A., Clausi, D.A.: Lung nodule classification using deep features in CT images. In: Proceedings of the 2015 12th Conference on Computer and Robot Vision, Halifax, Canada, 3–5 June 2015, pp. 133–138. IEEE (2015)
Suk, H.I., Lee, S.W., Shen, D.: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 101, 569–582 (2014). Alzheimer’s disease neuroimaging initiative
Suk, H.I., Shen, D.: Deep learning-based feature representation for AD/MCI classification. Med. Image Comput. Comput. Assist. Interv. 16(Pt 2), 583–590 (2013)
Liu, S., Lis, S., Cai, W., Pujol, S., Kikinis, R., Feng, D.: Early diagnosis of Alzheimer’s disease with deep learning. In: Proceedings of the IEEE 11th International Symposium on Biodmedical Imaging, Beijing, China, 29 April–2 May 2014, pp. 1015–1018. IEEE (2014)
Cheng, J.Z., Ni, D., Chou, Y.H., Qin, J., Tiu, C.M., Chang, Y.C., et al.: Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci. Rep. 6, 24454 (2016)
Kallenberg, M., et al.: Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans. Med. Imaging 35, 1322–1331 (2016)
Chen, J., Chen, J., Ding, H.Y., Pan, Q.S., Hong, W.D., Xu, G., et al.: Use of an artificial neural network to construct a model of predicting deep fungal infection in lung cancer patients. Asian Pac. J. Cancer Prev. 16, 5095–5099 (2015)
Liu, Y., Wang, J.: PACS and Digital Medicine: Essential Principles and Modern Practice, 1st edn. CRC Press, Boca Raton (2010)
Collins, F.S., Varmus, H.: A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015)
Aerts, H.J., Velazquez, E.R., Leijenaar, R.T., Parmar, C., Grossmann, P., Carvalho, S., et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 4006 (2014)
Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115 (2017)
Suk, H.-I., Shen, D.: Deep learning-based feature representation for AD/MCI classification. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 583–590. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_72
Suk, H.I., Lee, S.W., Shen, D.: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct. Funct. 220(2), 841–859 (2015). Alzheimer’s disease neuroimaging initiative
Suk, H.I., Wee, C.Y., Lee, S.W., Shen, D.: State-space model with deep learning for functional dynamics estimation in resting-state fMRI. NeuroImage 129, 292–307 (2016)
Menegola, A., Fornaciali, M., Pires, R., Avila, S., Valle, E.: Towards automated melanoma screening: exploring transfer learning schemes. arXiv preprint: arXiv:1609.01228, 5 September 2016
Hesamian, M.H., Jia, W., He, X., Kennedy, P.: Deep learning techniques for medical image segmentation: achievements and challenges. J. Digit. Imaging 32(4), 582–596 (2019)
Zhang, W., et al.: Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108, 214–224 (2015)
Bar, Y., Diamant, I., Wolf, L., Greenspan, H.: Deep learning with non-medical training used for chest pathology identification. In: Medical Imaging 2015: Computer-Aided Diagnosis, vol. 9414, p. 94140V. International Society for Optics and Photonics, 20 March 2015
Bergamo, A., Torresani, L., Fitzgibbon, A.W.: PiCoDes: learning a compact code for novel-category recognition. In: Advances in Neural Information Processing Systems, pp. 2088–2096 (2011)
Moeskops, P., et al.: Deep learning for multi-task medical image segmentation in multiple modalities. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016, Part II. LNCS, vol. 9901, pp. 478–486. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_55
Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M.: Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 246–253. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_31
Roth, H.R., Lu, L., Farag, A., Sohn, A., Summers, R.M.: Spatial aggregation of holistically-nested networks for automated pancreas segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016, Part II. LNCS, vol. 9901, pp. 451–459. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_52
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Agrawal, R.K., Juneja, A. (2019). Deep Learning Models for Medical Image Analysis: Challenges and Future Directions. In: Madria, S., Fournier-Viger, P., Chaudhary, S., Reddy, P. (eds) Big Data Analytics. BDA 2019. Lecture Notes in Computer Science(), vol 11932. Springer, Cham. https://doi.org/10.1007/978-3-030-37188-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-37188-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-37187-6
Online ISBN: 978-3-030-37188-3
eBook Packages: Computer ScienceComputer Science (R0)