Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

ADS-B Data Attack Detection Based on Generative Adversarial Networks

  • Conference paper
  • First Online:
Cyberspace Safety and Security (CSS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11982))

Included in the following conference series:

Abstract

With the requirements on accuracy, coverage and reliability, the air traffic surveillance is being developed into the next generation. In 2020, ADS-B data is becoming the foundation to establish air traffic situation awareness capabilities. However, ADS-B is designed without sufficient security guarantees, which results in diverse attack threats. Hence, it is in demand of effective attack detections to keep attack data away from decision flows. To improve the accuracy and robustness, attack detection based on generative adversarial network for ADS-B data is proposed. The LSTM networks are the core components to set up the generator and discriminator to make the most of temporal spatial correlations. Utilizing the reconstruction error and discriminative loss, the comprehensive detection metric is obtained to identify attack behaviors. To enhance the robustness, the analysis threshold for detection decision is determined in terms of normal data intrinsic features. By experimental analysis on real ADS-B data, the accuracy and robustness of the proposed method is validated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Strohmeier, M., Schafer, M., Pinheiro, R., Lenders, V., Martinovic, I.: On perception and reality in wireless air traffic communication security. IEEE Trans. Intell. Transp. Syst. 18(6), 1338–1357 (2017). https://doi.org/10.1109/tits.2016.2612584

    Article  Google Scholar 

  2. Sampigethaya, K., Poovendran, R.: Aviation cyber-physical systems: foundations for future aircraft and air transport. Proc. IEEE 101(8), 1834–1855 (2013). https://doi.org/10.1109/JPROC.2012.2235131

    Article  Google Scholar 

  3. Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutor. 18(2), 1153–1176 (2016). https://doi.org/10.1109/COMST.2015.2494502

    Article  Google Scholar 

  4. International Civil Aviation: Aeronautical surveillance manual. Report (2010)

    Google Scholar 

  5. RTCA (Firm). SC-186: Minimum Operational Performance Standards (MOPS) for 1090 MHz Extended Squitter Automatic Dependent Surveillance - Broadcast (ADS-B) and Traffic Information Services - Broadcast (TIS-B). Document (RTCA (Firm))), RTCA, Incorporated (2011). https://books.google.com/books?id=H69enQEACAAJ

  6. Strohmeier, M., Lenders, V., Martinovic, I.: On the security of the automatic dependent surveillance-broadcast protocol. IEEE Commun. Surv. Tutor. 17(2), 1066–1087 (2015). https://doi.org/10.1109/comst.2014.2365951

    Article  Google Scholar 

  7. Costin, A., Francillon, A.: Ghost in the air (traffic): on insecurity of ADS-B protocol and practical attacks on ADS-B devices. Black Hat USA (2012)

    Google Scholar 

  8. Riahi Manesh, M., Kaabouch, N.: Analysis of vulnerabilities, attacks, countermeasures and overall risk of the automatic dependent surveillance-broadcast (ADS-B) system. Int. J. Crit. Infrastruct. Prot. 19(Suppl. C), 16–31 (2017). https://doi.org/10.1016/j.ijcip.2017.10.002

    Article  Google Scholar 

  9. Ali, B.S.: System specifications for developing an automatic dependent surveillance-broadcast (ADS-B) monitoring system. Int. J. Crit. Infrastruct. Prot. 15, 40–46 (2016). https://doi.org/10.1016/j.ijcip.2016.06.004

    Article  Google Scholar 

  10. Zhang, J.F., Liu, J., Hu, R., Zhu, H.B.: Online four dimensional trajectory prediction method based on aircraft intent updating. Aerosp. Sci. Technol. 77, 774–787 (2018). https://doi.org/10.1016/j.ast.2018.03.037

    Article  Google Scholar 

  11. Li, T.Y., Wang, B.H.: Sequential collaborative detection strategy on ADS-B data attack. Int. J. Crit. Infrastruct. Prot. 24, 78–99 (2019). https://doi.org/10.1016/j.ijcip.2018.11.003

    Article  Google Scholar 

  12. Zhang, T., Wu, R., Lai, R., Zhang, Z.: Probability hypothesis density filter for radar systematic bias estimation aided by ADS-B. Sig. Proces. 120(Suppl. C), 280–287 (2016). https://doi.org/10.1016/j.sigpro.2015.09.012

    Article  Google Scholar 

  13. Goodfellow, I.J., et al.: Generative adversarial nets. In: International Conference on Neural Information Processing Systems (2014)

    Google Scholar 

  14. Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: a survey (2019). arXiv preprint arXiv:03407

  15. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: an overview. IEEE Sig. Process. Mag. 35(1), 53–65 (2018). https://doi.org/10.1109/MSP.2017.2765202

    Article  Google Scholar 

  16. Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet, O.: Are GANs created equal? A large-scale study (2017)

    Google Scholar 

  17. Han, J., Zhang, Z., Cummins, N., Schuller, B.: Adversarial training in affective computing and sentiment analysis: recent advances and perspectives [review article]. IEEE Comput. Intell. Mag. 14(2), 68–81 (2019). https://doi.org/10.1109/MCI.2019.2901088

    Article  Google Scholar 

  18. Tian, K., Zhou, S., Fan, J., Guan, J.: Learning competitive and discriminative reconstructions for anomaly detection. arXiv preprint arXiv:07058

  19. Ruff, L., et al.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4390–4399

    Google Scholar 

  20. Kahng, M., Thorat, N., Chau, D.H., Viégas, F.B., Wattenberg, M.: GAN lab: understanding complex deep generative models using interactive visual experimentation. IEEE Trans. Vis. Comput. Graph. 25(1), 310–320 (2019). https://doi.org/10.1109/TVCG.2018.2864500

    Article  Google Scholar 

  21. Esteban, C., Hyland, S.L., Rätsch, G.: Real-valued (medical) time series generation with recurrent conditional GANs (2017)

    Google Scholar 

  22. Li, D., Chen, D., Shi, L., Jin, B., Goh, J., Ng, S.K.: MAD-GAN: multivariate anomaly detection for time series data with generative adversarial networks (2019)

    Google Scholar 

  23. Mahmoud, M.S.B., Pirovano, A., Larrieu, N.: Aeronautical communication transition from analog to digital data: a network security survey. Comput. Sci. Rev. 11–12, 1–29 (2014)

    Article  Google Scholar 

  24. Strohmeier, M., Lenders, V., Martinovic, I.: A localization approach for crowdsourced air traffic communication networks. IEEE Trans. Aerosp. Electron. Syst. PP(99), 1 (2016)

    Google Scholar 

  25. Jeon, D., Eun, Y., Kim, H.: Estimation fusion with radar and ADS-B for air traffic surveillance. Int. J. Control Autom. Syst. 13(2), 336–345 (2015). https://doi.org/10.1007/s12555-014-0060-1

    Article  Google Scholar 

  26. Schafer, M., Strohmeier, M., Smith, M., Fuchs, M., Lenders, V., Martinovic, I.: IEEE: OpenSky report 2018: assessing the integrity of crowdsourced mode S and ADS-B data. In: IEEE-AIAA Digital Avionics Systems Conference, pp. 1388–1396. IEEE, New York (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tengyao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, T., Wang, B., Shang, F., Tian, J., Cao, K. (2019). ADS-B Data Attack Detection Based on Generative Adversarial Networks. In: Vaidya, J., Zhang, X., Li, J. (eds) Cyberspace Safety and Security. CSS 2019. Lecture Notes in Computer Science(), vol 11982. Springer, Cham. https://doi.org/10.1007/978-3-030-37337-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37337-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37336-8

  • Online ISBN: 978-3-030-37337-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics