Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Low-Frequency Broadband Triboelectric Energy Harvester Based on Cantilever Beam with a Groove

  • Conference paper
  • First Online:
Human Centered Computing (HCC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11956))

Included in the following conference series:

  • 1510 Accesses

Abstract

This paper introduces a contact separation triboelectric energy harvester (TEH) using a cantilever beam with a groove to work at low-frequency. The designed TEH exhibits broadband behavior which is induced in the cantilever motion due to contact between two triboelectric surfaces. The open-circuit peak output voltage and output power of this fabricated prototype are 64 V and 5.4 μW at low resonant frequency of 13 Hz, respectively, when it matches an optimal loading resistance of 1.2 MΩ under the excitation of 0.9 g acceleration. Moreover, an operating frequency bandwidth of 9.2 Hz for the TEH device can be obtained at an acceleration level of 1.1 g.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tang, G., Yang, B., Liu, J.-Q., et al.: Development of high performance piezoelectric d33 mode MEMS Vibration energy harvester based on PMN-PT single crystal thick film. Sens. Actuators, A 205, 150–155 (2014)

    Article  Google Scholar 

  2. He, T., Shi, Q., Wang, H., et al.: Beyond energy harvesting-multi-functional triboelectric nanosensors on a textile. Nano Energy 57, 338–352 (2019)

    Article  Google Scholar 

  3. Shi, Q., He, T., Lee, C.: More than energy harvesting-combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy 57, 851–871 (2019)

    Article  Google Scholar 

  4. Tang, G., Yang, B., Hou, C., et al.: A piezoelectric micro generator worked at low frequency and high acceleration based on PZT and phosphor bronze bonding. Sci. Rep. 6, 38798 (2016)

    Article  Google Scholar 

  5. Li, G., Yang, B., Hou, C., et al.: A piezoelectric energy harvester utilizing Pb[ZrxTi1-x]O3 thick film on phosphor bronze. Sens. Mater. 29(12), 1723–1731 (2017)

    Google Scholar 

  6. Nguyen, D.S., Halvorsen, E., Jensen, G.U., et al.: Fabrication and characterization of a wideband MEMS energy harvester utilizing nonlinear springs. J. Micromech. Microeng. 20(20), 125900 (2010)

    Google Scholar 

  7. Basset, P., Galayko, D., Cottone, F., et al.: Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact. J. Micromech. Microeng. 24(3), 501–522 (2017)

    Google Scholar 

  8. Saha, C.R., Odonnell, T., Wang, N., et al.: Electromagnetic generator for harvesting energy from human motion. Sens. Actuators, A 147(1), 248–253 (2008)

    Article  Google Scholar 

  9. Rome, L.C., Flynn, L., Goldman, E.M., et al.: Generating electricity while walking with loads. Science 309, 1725–1728 (2005)

    Article  Google Scholar 

  10. Yi, Z., Yang, B., et al.: High performance bimorph piezoelectric MEMS harvester via bulk PZT thick films on thin beryllium-bronze substrate. Appl. Phys. Lett. 111, 013902 (2017)

    Article  Google Scholar 

  11. Tang, G., Liu, J.-q., Yang, B., et al.: Fabrication and analysis of high-performance piezoelectric MEMS generators. J. Micromech. Microeng. 22, 065017 (2012)

    Article  Google Scholar 

  12. Dhakar, L., Tay, F.E.H., Lee, C.: Development of a broadband triboelectric energy harvester with SU-8 micropillars. J. Microelectromechan. Syst. 24(1), 91–99 (2014)

    Article  Google Scholar 

  13. Dhakar, L., Tay, F.E.H., Lee, C.: Investigation of contact electrification based broadband energy harvesting mechanism using elastic PDMS microstructures. J. Micromech. Microeng. 24, 104002 (2014)

    Article  Google Scholar 

  14. Li, H., Li, R., Fang, X., et al.: 3D printed flexible triboelectric nanogenerator with viscoelastic inks for mechanical energy harvesting. Nano energy 58, 447–454 (2019)

    Article  Google Scholar 

  15. Xie, Y., Wang, S., Niu, S., et al.: Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv. Mater. 26, 6599–6607 (2014)

    Article  Google Scholar 

  16. Zhu, Y., Yang, B., Liu, J., et al.: A flexible and biocompatible triboelectric nanogenerator with tunable internal resistance for powering wearable devices. Sci. Rep. 6, 22233 (2016)

    Article  Google Scholar 

  17. Tian, Y., Li, G., Yi, Z., et al.: A low-frequency MEMS piezoelectric energy harvester with a rectangular hole based on bulk PZT film. J. Phys. Chem. Solids 117, 21–27 (2018)

    Article  Google Scholar 

  18. Dhakar, L., Liu, H., Tay, F., Lee, C.: A new energy harvester design for high power output at low frequencies. Sens. Actuators, A 199, 344–352 (2013)

    Article  Google Scholar 

  19. Liu, H., Lee, C., Kobayashi, T., Tay, C.J., Quan, C.: Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers. Smart Mater. Struct. 21, 035005 (2012)

    Article  Google Scholar 

  20. Hu, Y., Yue, Q., Yu, H., et al.: An adaptable interface conditioning circuit based on triboelectric nanogenerators for self powered sensors. Micromachines 9, 105 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51565038) and the Science and Technology Project of Jiangxi Provincial Education Department (GJJ170986, GJJ180938).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, X. et al. (2019). A Low-Frequency Broadband Triboelectric Energy Harvester Based on Cantilever Beam with a Groove. In: Milošević, D., Tang, Y., Zu, Q. (eds) Human Centered Computing. HCC 2019. Lecture Notes in Computer Science(), vol 11956. Springer, Cham. https://doi.org/10.1007/978-3-030-37429-7_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37429-7_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37428-0

  • Online ISBN: 978-3-030-37429-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics