Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Intelligent Context Aware Recommender System for Real-Estate

  • Conference paper
  • First Online:
Pattern Recognition and Artificial Intelligence (MedPRAI 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1144))

Abstract

Finding products and items in large online space that meet user needs is difficult. Time spent searching before finding a relevant item can be a significant time sink for users. As with other economic branches, growing Internet usage also changed user behavior in the real-estate market. Advancements in virtual reality offer virtual tours and interactive map and floor plans which make an online rental websites very popular among users. With the abundance of information, recommender systems become more important than ever to give the user relevant property suggestions and reduce search time. A sophisticated recommender in this domain can help reduce the need of a real-estate agent. Session-based user behavior and lack of user profiles leads to the use of traditional recommendation methods. In this research, we propose an approach for real-estate recommendation based on Gated Orthogonal Recurrent Unit (GORU) and Weighted Cosine Similarity. GORU captures the user search context and weighted cosine similarity improves the rank of pertinent property. We have used the data of an online public real estate web portal (AARZ.PK). The data represents the original behavior of the user on an online portal. We have used Recall, User coverage and Mean Reciprocal Rank (MRR) metrics for the evaluation of our system against other state-of-the-art techniques. The proposed solution outperforms various baselines and state-of-the-art RNN based solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arjovsky, M., Shah, A., Bengio, Y.: Unitary evolution recurrent neural networks. In: International Conference on Machine Learning, pp. 1120–1128 (2016)

    Google Scholar 

  2. Ayyaz, S., Qamar, U., Nawaz, R.: HCF-CRS: a hybrid content based fuzzy conformal recommender system for providing recommendations with confidence. PLOS One 13(10), 1–30 (2018). https://doi.org/10.1371/journal.pone.0204849

    Article  Google Scholar 

  3. Chen, L., Pu, P.: Preference-based organization interfaces: aiding user critiques in recommender systems. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 77–86. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73078-1_11

    Chapter  Google Scholar 

  4. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  5. De Graaff, V., van Keulen, M., de By, R.A.: Towards geosocial recommender systems. In: Proceedings of the 4th International Workshop on Web Intelligence & Communities, p. 8. ACM (2012)

    Google Scholar 

  6. Devooght, R., Bersini, H.: Collaborative filtering with recurrent neural networks. CoRR abs/1608.07400 (2016)

    Google Scholar 

  7. Anwaar, F., Iltaf, N., Afzal, H., Nawaz, R.: HRS-CE: a hybrid framework to integrate content embeddings in recommender systems for cold start items. J. Comput. Sci. 29, 9–18 (2018)

    Article  Google Scholar 

  8. Hidasi, B., Karatzoglou, A.: Recurrent neural networks with top-k gains for session-based recommendations. In: CIKM (2018)

    Google Scholar 

  9. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939 (2015)

  10. Hidasi, B., Quadrana, M., Karatzoglou, A., Tikk, D.: Parallel recurrent neural network architectures for feature-rich session-based recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 241–248. ACM (2016)

    Google Scholar 

  11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  12. Hodoň, M., Eichler, G., Erfurth, C., Fahrnberger, G. (eds.): I4CS 2018. CCIS, vol. 863. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93408-2

    Book  Google Scholar 

  13. Jing, L., et al.: Gated orthogonal recurrent units: on learning to forget. Neural Comput. 31(4), 765–783 (2019)

    Article  MathSciNet  Google Scholar 

  14. Knoll, J., Groß, R., Schwanke, A., Rinn, B., Schreyer, M.: Applying recommender approaches to the real estate e-commerce market. In: Hodoň, M., Eichler, G., Erfurth, C., Fahrnberger, G. (eds.) I4CS 2018. CCIS, vol. 863, pp. 111–126. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93408-2_9

    Chapter  Google Scholar 

  15. Qadir, H., Khalid, O., Khan, M.U.S., Khan, A.U.R., Nawaz, R.: An optimal ride sharing recommendation framework for carpooling services. IEEE Access 6, 62296–62313 (2018). https://doi.org/10.1109/ACCESS.2018.2876595

    Article  Google Scholar 

  16. Quadrana, M., Karatzoglou, A., Hidasi, B., Cremonesi, P.: Personalizing session-based recommendations with hierarchical recurrent neural networks. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, pp. 130–137. ACM (2017)

    Google Scholar 

  17. Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 1–35. Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-3_1

    Chapter  MATH  Google Scholar 

  18. Shearin, S., Lieberman, H.: Intelligent profiling by example. In: Proceedings of the 6th International Conference on Intelligent User Interfaces, pp. 145–151. ACM (2001)

    Google Scholar 

  19. Tan, Y.K., Xu, X., Liu, Y.: Improved recurrent neural networks for session-based recommendations. In: DLRS@RecSys (2016)

    Google Scholar 

  20. Tonara, D.B., Widyawono, A.A., Ciputra, U.: Recommender system in property business a case study from Surabaya, Indonesia. SPECIAL ISSUE-Int. J. Comput. Internet Manag. 23(May), 30–31 (2013)

    Google Scholar 

  21. Wu, C.Y., Ahmed, A., Beutel, A., Smola, A.J., Jing, H.: Recurrent recommender networks. In: Proceedings of the tenth ACM International Conference on Web Search and Data Mining, pp. 495–503. ACM (2017)

    Google Scholar 

  22. Yuan, X., Lee, J.H., Kim, S.J., Kim, Y.H.: Toward a user-oriented recommendation system for real estate websites. Inf. Syst. 38(2), 231–243 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

This research was partly supported by HEC Grant TDF-029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Ul-Hasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rehman, F., Masood, H., Ul-Hasan, A., Nawaz, R., Shafait, F. (2020). An Intelligent Context Aware Recommender System for Real-Estate. In: Djeddi, C., Jamil, A., Siddiqi, I. (eds) Pattern Recognition and Artificial Intelligence. MedPRAI 2019. Communications in Computer and Information Science, vol 1144. Springer, Cham. https://doi.org/10.1007/978-3-030-37548-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37548-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37547-8

  • Online ISBN: 978-3-030-37548-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics