Abstract
We present an efficient approach for action co-localization in an untrimmed video by exploiting contextual and temporal feature from multiple action proposals. Most existing action localization methods focus on each individual action instances without accounting for the correlations among them. To exploit such correlations, we propose the Graph-based Temporal Action Co-Localization (G-TACL) method, which aggregates contextual features from multiple action proposals to assist temporal localization. This aggregation procedure is achieved with Graph Neural Networks with nodes initialized by the action proposal representations. In addition, a multi-level consistency evaluator is proposed to measure the similarity, which summarizes low-level temporal coincidences, features vector dot products and high-level contextual features similarities between any two proposals. Subsequently, these nodes are iteratively updated with Gated Recurrent Unit (GRU) and the obtained node features are used to regress the temporal boundaries of the action proposals, and finally to localize the action instances. Experiments on the THUMOS’14 and MEXaction2 datasets have demonstrated the efficacy of our proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that our method is not restricted to any specific feature extractor.
References
Mexaction2. http://mexculture.cnam.fr/xwiki/bin/view/Datasets/Mex+ac-tion+dataset
Buch, S., Escorcia, V., Ghanem, B., Fei-Fei, L., Niebles, J.C.: End-to-end, single-stream temporal action detection in untrimmed videos. In: BMVC (2017)
Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259 (2014)
Duan, X., et al.: Joint spatio-temporal action localization in untrimmed videos with per-frame segmentation. In: ICIP (2018)
Gao, Z., et al.: ER3: a unified framework for event retrieval, recognition and recounting. In: CVPR (2017)
Gao, Z., Wang, L., Jojic, N., Niu, Z., Zheng, N., Hua, G.: Video imprint. IEEE Trans. Pattern Anal. Mach. Intell. (2018)
Gao, Z., Wang, L., Zhang, Q., Niu, Z., Zheng, N., Hua, G.: Video imprint segmentation for temporal action detection in untrimmed videos. In: AAAI (2019)
Heilbron, F.C., Niebles, J.C., Ghanem, B.: Fast temporal activity proposals for efficient detection of human actions in untrimmed videos. In: CVPR (2016)
Jain, A., Zamir, A.R., Savarese, S., Saxena, A.: Structural-RNN: Deep learning on spatio-temporal graphs. In: CVPR (2016)
Jiang, Y., et al.: Thumos challenge: action recognition with a large number of classes (2014)
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: CVPR (2014)
Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)
Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64(2–3), 107–123 (2005)
Li, R., Tapaswi, M., Liao, R., Jia, J., Urtasun, R., Fidler, S.: Situation recognition with graph neural networks. In: ICCV (2017)
Lin, T., Zhao, X., Shou, Z.: Single shot temporal action detection. In: ACM MM (2017)
Liu, Z., et al.: Joint video object discovery and segmentation by coupled dynamic Markov networks. IEEE Trans. Image Process. 27(12), 5840–5853 (2018)
Liu, Z., et al.: Weakly supervised temporal action localization through contrast based evaluation networks. In: ICCV (2019)
Lv, X., Wang, L., Zhang, Q., Zheng, N., Hua, G.: Video object co-segmentation from noisy videos by a multi-level hypergraph model. In: ICIP (2018)
Oneata, D., Verbeek, J., Schmid, C.: The LEAR submission at Thumos 2014. In: ECCV THUMOS Workshop (2014)
Paul, S., Roy, S., Roy-Chowdhury, A.K.: W-TALC: weakly-supervised temporal activity localization and classification. In: ECCV (2018)
Qi, S., Wang, W., Jia, B., Shen, J., Zhu, S.C.: Learning human-object interactions by graph parsing neural networks. In: ECCV (2018)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS (2015)
Richard, A., Gall, J.: Temporal action detection using a statistical language model. In: CVPR (2016)
Shou, Z., Chan, J., Zareian, A., Miyazawa, K., Chang, S.F.: CDC: convolutional-de-convolutional networks for precise temporal action localization in untrimmed videos. In: CVPR (2017)
Shou, Z., Wang, D., Chang, S.F.: Temporal action localization in untrimmed videos via multi-stage CNNs. In: CVPR (2016)
Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NeurPIS (2014)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)
Tan, H., Wang, L., Zhang, Q., Gao, Z., Zheng, N., Hua, G.: Object affordances graph network for action recognition. In: BMVC (2019)
Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: ICCV (2015)
Wang, H., Schmid, C.: Action recognition with improved trajectories. In: ICCV (2013)
Wang, L., Hua, G., Sukthankar, R., Xue, J., Niu, Z., Zheng, N.: Video object discovery and co-segmentation with extremely weak supervision. IEEE Trans. Pattern Anal. Mach. Intell. 39(10), 2074–2088 (2017)
Wang, L., Qiao, Y., Tang, X.: Action recognition and detection by combining motion and appearance features. In: ECCV THUMOS Workshop (2014)
Wang, L., Qiao, Y., Tang, X., Van Gool, L.: Actionness estimation using hybrid fully convolutional networks. In: CVPR (2016)
Xu, H., Das, A., Saenko, K.: R-C3D: region convolutional 3d network for temporal activity detection. In: ICCV (2017)
Yang, J., Lu, J., Lee, S., Batra, D., Parikh, D.: Graph R-CNN for scene graph generation. In: ECCV (2018)
Yang, K., Qiao, P., Li, D., Lv, S., Dou, Y.: Exploring temporal preservation networks for precise temporal action localization. In: AAAI (2018)
Yuan, J., Ni, B., Yang, X., Kassim, A.A.: Temporal action localization with pyramid of score distribution features. In: CVPR (2016)
Yuan, Z.H., Stroud, J.C., Lu, T., Deng, J.: Temporal action localization by structured maximal sums. In: CVPR (2017)
Zhao, Y., Xiong, Y., Wang, L., Wu, Z., Tang, X., Lin, D.: Temporal action detection with structured segment networks. In: ICCV (2017)
Acknowledgements
This work was supported partly by National Key R&D Program of China Grant 2018AAA0101400, NSFC Grants 61629301, 61773312, and 61976171, China Postdoctoral Science Foundation Grant 2019M653642, and Young Elite Scientists Sponsorship Program by CAST Grant 2018QNRC001.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhai, C. et al. (2020). Action Co-localization in an Untrimmed Video by Graph Neural Networks. In: Ro, Y., et al. MultiMedia Modeling. MMM 2020. Lecture Notes in Computer Science(), vol 11961. Springer, Cham. https://doi.org/10.1007/978-3-030-37731-1_45
Download citation
DOI: https://doi.org/10.1007/978-3-030-37731-1_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-37730-4
Online ISBN: 978-3-030-37731-1
eBook Packages: Computer ScienceComputer Science (R0)