Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Action Co-localization in an Untrimmed Video by Graph Neural Networks

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11961))

Included in the following conference series:

Abstract

We present an efficient approach for action co-localization in an untrimmed video by exploiting contextual and temporal feature from multiple action proposals. Most existing action localization methods focus on each individual action instances without accounting for the correlations among them. To exploit such correlations, we propose the Graph-based Temporal Action Co-Localization (G-TACL) method, which aggregates contextual features from multiple action proposals to assist temporal localization. This aggregation procedure is achieved with Graph Neural Networks with nodes initialized by the action proposal representations. In addition, a multi-level consistency evaluator is proposed to measure the similarity, which summarizes low-level temporal coincidences, features vector dot products and high-level contextual features similarities between any two proposals. Subsequently, these nodes are iteratively updated with Gated Recurrent Unit (GRU) and the obtained node features are used to regress the temporal boundaries of the action proposals, and finally to localize the action instances. Experiments on the THUMOS’14 and MEXaction2 datasets have demonstrated the efficacy of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that our method is not restricted to any specific feature extractor.

References

  1. Mexaction2. http://mexculture.cnam.fr/xwiki/bin/view/Datasets/Mex+ac-tion+dataset

  2. Buch, S., Escorcia, V., Ghanem, B., Fei-Fei, L., Niebles, J.C.: End-to-end, single-stream temporal action detection in untrimmed videos. In: BMVC (2017)

    Google Scholar 

  3. Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259 (2014)

  4. Duan, X., et al.: Joint spatio-temporal action localization in untrimmed videos with per-frame segmentation. In: ICIP (2018)

    Google Scholar 

  5. Gao, Z., et al.: ER3: a unified framework for event retrieval, recognition and recounting. In: CVPR (2017)

    Google Scholar 

  6. Gao, Z., Wang, L., Jojic, N., Niu, Z., Zheng, N., Hua, G.: Video imprint. IEEE Trans. Pattern Anal. Mach. Intell. (2018)

    Google Scholar 

  7. Gao, Z., Wang, L., Zhang, Q., Niu, Z., Zheng, N., Hua, G.: Video imprint segmentation for temporal action detection in untrimmed videos. In: AAAI (2019)

    Google Scholar 

  8. Heilbron, F.C., Niebles, J.C., Ghanem, B.: Fast temporal activity proposals for efficient detection of human actions in untrimmed videos. In: CVPR (2016)

    Google Scholar 

  9. Jain, A., Zamir, A.R., Savarese, S., Saxena, A.: Structural-RNN: Deep learning on spatio-temporal graphs. In: CVPR (2016)

    Google Scholar 

  10. Jiang, Y., et al.: Thumos challenge: action recognition with a large number of classes (2014)

    Google Scholar 

  11. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: CVPR (2014)

    Google Scholar 

  12. Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)

  13. Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64(2–3), 107–123 (2005)

    Article  Google Scholar 

  14. Li, R., Tapaswi, M., Liao, R., Jia, J., Urtasun, R., Fidler, S.: Situation recognition with graph neural networks. In: ICCV (2017)

    Google Scholar 

  15. Lin, T., Zhao, X., Shou, Z.: Single shot temporal action detection. In: ACM MM (2017)

    Google Scholar 

  16. Liu, Z., et al.: Joint video object discovery and segmentation by coupled dynamic Markov networks. IEEE Trans. Image Process. 27(12), 5840–5853 (2018)

    Article  MathSciNet  Google Scholar 

  17. Liu, Z., et al.: Weakly supervised temporal action localization through contrast based evaluation networks. In: ICCV (2019)

    Google Scholar 

  18. Lv, X., Wang, L., Zhang, Q., Zheng, N., Hua, G.: Video object co-segmentation from noisy videos by a multi-level hypergraph model. In: ICIP (2018)

    Google Scholar 

  19. Oneata, D., Verbeek, J., Schmid, C.: The LEAR submission at Thumos 2014. In: ECCV THUMOS Workshop (2014)

    Google Scholar 

  20. Paul, S., Roy, S., Roy-Chowdhury, A.K.: W-TALC: weakly-supervised temporal activity localization and classification. In: ECCV (2018)

    Chapter  Google Scholar 

  21. Qi, S., Wang, W., Jia, B., Shen, J., Zhu, S.C.: Learning human-object interactions by graph parsing neural networks. In: ECCV (2018)

    Google Scholar 

  22. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS (2015)

    Google Scholar 

  23. Richard, A., Gall, J.: Temporal action detection using a statistical language model. In: CVPR (2016)

    Google Scholar 

  24. Shou, Z., Chan, J., Zareian, A., Miyazawa, K., Chang, S.F.: CDC: convolutional-de-convolutional networks for precise temporal action localization in untrimmed videos. In: CVPR (2017)

    Google Scholar 

  25. Shou, Z., Wang, D., Chang, S.F.: Temporal action localization in untrimmed videos via multi-stage CNNs. In: CVPR (2016)

    Google Scholar 

  26. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NeurPIS (2014)

    Google Scholar 

  27. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)

    Google Scholar 

  28. Tan, H., Wang, L., Zhang, Q., Gao, Z., Zheng, N., Hua, G.: Object affordances graph network for action recognition. In: BMVC (2019)

    Google Scholar 

  29. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: ICCV (2015)

    Google Scholar 

  30. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: ICCV (2013)

    Google Scholar 

  31. Wang, L., Hua, G., Sukthankar, R., Xue, J., Niu, Z., Zheng, N.: Video object discovery and co-segmentation with extremely weak supervision. IEEE Trans. Pattern Anal. Mach. Intell. 39(10), 2074–2088 (2017)

    Article  Google Scholar 

  32. Wang, L., Qiao, Y., Tang, X.: Action recognition and detection by combining motion and appearance features. In: ECCV THUMOS Workshop (2014)

    Google Scholar 

  33. Wang, L., Qiao, Y., Tang, X., Van Gool, L.: Actionness estimation using hybrid fully convolutional networks. In: CVPR (2016)

    Google Scholar 

  34. Xu, H., Das, A., Saenko, K.: R-C3D: region convolutional 3d network for temporal activity detection. In: ICCV (2017)

    Google Scholar 

  35. Yang, J., Lu, J., Lee, S., Batra, D., Parikh, D.: Graph R-CNN for scene graph generation. In: ECCV (2018)

    Google Scholar 

  36. Yang, K., Qiao, P., Li, D., Lv, S., Dou, Y.: Exploring temporal preservation networks for precise temporal action localization. In: AAAI (2018)

    Google Scholar 

  37. Yuan, J., Ni, B., Yang, X., Kassim, A.A.: Temporal action localization with pyramid of score distribution features. In: CVPR (2016)

    Google Scholar 

  38. Yuan, Z.H., Stroud, J.C., Lu, T., Deng, J.: Temporal action localization by structured maximal sums. In: CVPR (2017)

    Google Scholar 

  39. Zhao, Y., Xiong, Y., Wang, L., Wu, Z., Tang, X., Lin, D.: Temporal action detection with structured segment networks. In: ICCV (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported partly by National Key R&D Program of China Grant 2018AAA0101400, NSFC Grants 61629301, 61773312, and 61976171, China Postdoctoral Science Foundation Grant 2019M653642, and Young Elite Scientists Sponsorship Program by CAST Grant 2018QNRC001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhai, C. et al. (2020). Action Co-localization in an Untrimmed Video by Graph Neural Networks. In: Ro, Y., et al. MultiMedia Modeling. MMM 2020. Lecture Notes in Computer Science(), vol 11961. Springer, Cham. https://doi.org/10.1007/978-3-030-37731-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37731-1_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37730-4

  • Online ISBN: 978-3-030-37731-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics