Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Application of a Knowledge Discovery Process to Study Instances of Capacitated Vehicle Routing Problems

  • Chapter
  • First Online:
Computation and Big Data for Transport

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 54))

Abstract

Vehicle Routing Problems (VRP) are computationally challenging, constrained optimization problems, which have central role in logistics management. Usually different solvers are being developed and applied for different kind of problems. However, if descriptive and general features could be extracted to describe such problems and their solution attempts, then one could apply data mining and machine learning methods in order to discover general knowledge on such problems. The aim then would be to improve understanding of the most important characteristics of VRPs from both efficient solution and utilization points of view. The purpose of this article is to address these challenges by proposing a novel feature analysis and knowledge discovery process for Capacitated Vehicle Routing problems (CVRP). Results of knowledge discovery allow us to draw interesting conclusions from relevant characteristics of CVRPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asta S (2015) Machine learning for improving heuristic optimisation. PhD thesis, University of Nottingham

    Google Scholar 

  2. Augerat P, Belenguer JM, Benavent E, Corberán A, Naddef D, Rinaldi G (1995) Computational results with a branch and cut code for the capacitated vehicle routing problem. Technical report 949-M. Universite Joseph Fourier, Grenoble, France

    Google Scholar 

  3. Äyrämö S (2006) Knowledge mining using robust clustering. Jyväskylä studies in computing, vol 63, University of Jyväskylä, Faculty of Information Technology

    Google Scholar 

  4. Äyrämö S, Kärkkäinen T, Majava K (2007) Robust refinement of initial prototypes for partitioning-based clustering algorithms. Recent advances in stochastic modeling and data analysis. World Scientific, Singapore, pp 473–482

    Google Scholar 

  5. Becker S, Gottlieb J, Stützle T (2006) Applications of racing algorithms: an industrial perspective. In: Proceedings of the 7th international conference on artificial evolution - EA’05. Springer, Berlin, pp 271–283

    Google Scholar 

  6. Borg I, Groenen PJF (2005) Modern multidimensional scaling: theory and applications, 2nd edn. Springer, Berlin

    Google Scholar 

  7. Bramer M (2007) Principles of data mining, vol 180. Springer, Berlin

    Google Scholar 

  8. Christofides N, Mingozzi A, Toth P (1979) The vehicle routing problem. In: Christofides N, Mingozzi A, Toth P Sandi C (eds) Combinatorial optimization. Wiley, New York, pp 315–338

    Google Scholar 

  9. Cord A, Ambroise C, Cocquerez J-P (2006) Feature selection in robust clustering based on Laplace mixture. Pattern Recognit Lett 27(6):627–635

    Article  Google Scholar 

  10. Csorba K, Vajk I (2007) Term clustering and confidence measurement. Advances in information systems development: new methods and practice for the networked society 1:481

    Article  Google Scholar 

  11. Czech ZJ (2010) A parallel simulated annealing algorithm as a tool for fitness landscapes exploration. In: Ros A (ed) Parallel and distributed computing. InTech

    Google Scholar 

  12. Dantzig GB, Ramser JH (1959) The truck dispatching problem. Manag Sci 6(1):80–91

    Article  MathSciNet  Google Scholar 

  13. Dheeru D, Taniskidou EK (2017) UCI machine learning repository. http://archive.ics.uci.edu/ml

  14. Eksioglu B, Vural AV, Reisman A (2009) The vehicle routing problem: a taxonomic review. Comput Ind Eng 57(4):1472–1483

    Article  Google Scholar 

  15. Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AI Mag 17(3):37–54

    Google Scholar 

  16. Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) The KDD process for extracting useful knowledge from volumes of data. Commun ACM 39(11):27–34

    Google Scholar 

  17. Fayyad UM, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery: an overview. Advances in knowledge discovery and data mining. AAAI Press, Menlo Park, pp 1–30

    Google Scholar 

  18. Fisher ML (1994) Optimal solution of vehicle routing problems using minimum k-trees. Oper Res 42(4):626–642

    Article  MathSciNet  Google Scholar 

  19. Gillett BE, Johnson JG (1976) Multi-terminal vehicle-dispatch algorithm. Omega 4(6):711–718

    Article  Google Scholar 

  20. Gomes JPP, Mesquita DPP, Freire AL, Junior AHS, Kärkkäinen T (2017) A robust minimal learning machine based on the M-estimator. In: Proceedings of the European symposium on artificial neural networks, computational intelligence and machine learning - ESANN 2017, pp 383–388

    Google Scholar 

  21. Hämäläinen J, Jauhiainen S, Kärkkäinen T (2017) Comparison of internal clustering validation indices for prototype-based clustering. Algorithms 10(3):105

    Article  MathSciNet  Google Scholar 

  22. Hämäläinen J, Kärkkäinen T, Rossi T (2018) Scalable robust clustering method for large and sparse data. In: Proceedings of the European symposium on artificial neural networks, computational intelligence and machine learning - ESANN 2018, 6 pp

    Google Scholar 

  23. Hänninen J, Kärkkäinen T (2016) Comparison of four-and six-layered configurations for deep network pretraining. In: European symposium on artificial neural networks, computational intelligence and machine learning - ESANN 2016, pp 533–538

    Google Scholar 

  24. Haykin SS, Haykin SS, Haykin SS, Haykin SS (2009) Neural networks and learning machines, vol 3. Pearson, Upper Saddle River

    Google Scholar 

  25. Hoff A, Andersson H, Christiansen M, Hasle G, Løkketangen A (2010) Industrial aspects and literature survey: fleet composition and routing. Comput Oper Res 37(12):2041–2061

    Article  MathSciNet  Google Scholar 

  26. Hutter F, Hoos HH, Leyton-Brown K (2013) Identifying key algorithm parameters and instance features using forward selection. In: International conference on learning and intelligent optimization. Springer, pp 364–381

    Google Scholar 

  27. Jauhiainen S, Kärkkäinen T (2017) A simple cluster validation index with maximal coverage. In: Proceedings of the European symposium on artificial neural networks, computational intelligence and machine learning - ESANN 2017, pp 293–298

    Google Scholar 

  28. Kanda J, Carvalho A, Hruschka E, Soares C (2011) Selection of algorithms to solve traveling salesman problems using meta-learning. Int J Hybrid Intell Syst 8(3):117–128

    Article  Google Scholar 

  29. Kanda J, de Carvalho A, Hruschka E, Soares C, Brazdil P (2016) Meta-learning to select the best meta-heuristic for the traveling salesman problem: a comparison of meta-features. Neurocomputing 205:393–406

    Article  Google Scholar 

  30. Kärkkäinen T (2002) MLP in layer-wise form with applications to weight decay. Neural Comput 14(6):1451–1480

    Article  Google Scholar 

  31. Kärkkäinen T (2015) Assessment of feature saliency of MLP using analytic sensitivity. In: European symposium on artificial neural networks, computational intelligence and machine learning - ESANN2015. Presses universitaires de Louvain, pp 273–278

    Google Scholar 

  32. Kärkkäinen T, Glowinski R (2019) A Douglas-Rachford method for sparse extreme learning machine. Methods Appl Anal 1–19 (to appear)

    Google Scholar 

  33. Kärkkäinen T, Heikkola E (2004) Robust formulations for training multilayer perceptrons. Neural Comput 16(4):837–862

    Article  Google Scholar 

  34. Kärkkäinen T, Saarela M (2015) Robust principal component analysis of data with missing values. International workshop on machine learning and data mining in pattern recognition. Springer, pp 140–154

    Google Scholar 

  35. Kotthoff L (2016) Algorithm selection for combinatorial search problems: a survey. In: Bessiere C, De Raedt L, Kotthoff L, Nijssen S, O’Sullivan B, Pedreschi D (eds) Data mining and constraint programming: foundations of a cross-disciplinary approach. Springer, pp 149–190

    Google Scholar 

  36. Kotthoff L, Kerschke P, Hoos H, Trautmann H (2015) Improving the state of the art in inexact TSP solving using per-instance algorithm selection. In: International conference on learning and intelligent optimization. Springer, pp 202–217

    Google Scholar 

  37. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47(260):583–621

    Article  Google Scholar 

  38. Kubiak M (2007) Distance measures and fitness-distance analysis for the capacitated vehicle routing problem. In: Doerner KF, Gendreau M, Greistorfer P, Gutjahr W, Hartl RF, Reimann M (eds) Metaheuristics: progress in complex systems optimization. Springer US, Boston, MA, pp 345–364

    Google Scholar 

  39. Laporte G (2009) Fifty years of vehicle routing. Transp Sci 43(4):408–416

    Article  Google Scholar 

  40. Laporte G, Ropke S, Vidal T (2014) Heuristics for the vehicle routing problem. Vehicle routing: problems, methods, and applications, 2nd edn. SIAM, Philadelphia, pp 87–116

    Google Scholar 

  41. Marmion M-É, Jourdan L, Dhaenens C (2013) Fitness landscape analysis and metaheuristics efficiency. J Math Model Algorithms Oper Res 12(1):3–26

    MathSciNet  MATH  Google Scholar 

  42. Mersmann O, Bischl B, Trautmann H, Wagner M, Bossek J, Neumann F (2013) A novel feature-based approach to characterize algorithm performance for the traveling salesperson problem. Ann Math Artif Intell 69(2):151–182

    Article  MathSciNet  Google Scholar 

  43. Nallaperuma S, Wagner M, Neumann F, Bischl B, Mersmann O, Trautmann H (2013). A feature-based comparison of local search and the Christofides algorithm for the travelling salesperson problem. In: Proceedings of the twelfth workshop on foundations of genetic algorithms XII. ACM, pp 147–160

    Google Scholar 

  44. Nallaperuma S, Wagner M, Neumann F (2015) Analyzing the effects of instance features and algorithm parameters for max-min ant system and the traveling salesperson problem. Front Robot AI 2:18

    Article  Google Scholar 

  45. Niemelä M, Äyrämö S, Kärkkäinen T (2018) Comparison of cluster validation indices with missing data. In: Proceedings of the European symposium on artificial neural networks, computational intelligence and machine learning - ESANN 2018, 6 pp

    Google Scholar 

  46. Nygard KE, Juell P, Kadaba N (1990) Neural networks for selective vehicle routing heuristics. ORSA J Comput 2(4):353–364

    Article  Google Scholar 

  47. Pellegrini P, Birattari M (2007) Implementation effort and performance. In: Stutzle T, Birattari M, Hoos HH (eds) Engineering stochastic local search algorithms. Designing, implementing and analyzing effective heuristics. Lecture notes in computer science, vol 4638. Springer, Berlin, pp 31–45

    Google Scholar 

  48. Pihera J, Musliu N (2014) Application of machine learning to algorithm selection for TSP. In: IEEE 26th international conference on tools with artificial intelligence (ICTAI). IEEE, pp 47–54

    Google Scholar 

  49. Rasku J, Kärkkäinen T, Hotokka P (2013) Solution space visualization as a tool for vehicle routing algorithm development. In: Collan M, Hämälainen J, Luukka P (eds) Proceedings of the Finnish operations research society 40th anniversary workshop (FORS40), vol 13. LUT Scientific and Expertise Publications, pp 9–12

    Google Scholar 

  50. Rasku J, Musliu N, Kärkkäinen T (2014) Automating the parameter selection in VRP: an off-line parameter tuning tool comparison. In: Fitzgibbon W, Kuznetsov YA, Neittaanmäki P, Pironneau O (eds) Modeling, simulation and optimization for science and technology. Springer, pp 191–209

    Google Scholar 

  51. Rasku J, Kärkkäinen T, Musliu N (2016) Feature extractors for describing vehicle routing problem instances. In: Hardy B, Qazi A, Ravizza S (eds) 5th student conference on operational research (SCOR 2016). OpenAccess series in informatics (OASIcs), vol 50. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp 1–13

    Google Scholar 

  52. Reinelt G (1991) TSPLIB - a traveling salesman problem library. ORSA J Comput 3(4):376–384

    Article  MathSciNet  Google Scholar 

  53. Rice JR (1976) The algorithm selection problem. Adv Comput 15:65–118

    Article  Google Scholar 

  54. Saarela M, Kärkkäinen T (2015) Analysing student performance using sparse data of core bachelor courses. J Educ Data Min 7(1):3–32

    Google Scholar 

  55. Saarela M, Hämäläinen J, Kärkkäinen T (2017) Feature ranking of large, robust, and weighted clustering result. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, pp 96–109

    Google Scholar 

  56. Singhal A et al (2001) Modern information retrieval: a brief overview. IEEE Data Eng Bull 24(4):35–43

    Google Scholar 

  57. Smith-Miles K, Lopes L (2012) Measuring instance difficulty for combinatorial optimization problems. Comput Oper Res 39(5):875–889

    Article  MathSciNet  Google Scholar 

  58. Smith-Miles K, van Hemert J (2011) Discovering the suitability of optimisation algorithms by learning from evolved instances. Ann Math Artif Intell 61(2):87–104

    Google Scholar 

  59. Steinhaus M (2015) The application of the self organizing map to the vehicle routing problem. PhD thesis, University of Rhode Island

    Google Scholar 

  60. Toth P, Vigo D (2014) Vehicle routing: problems, methods, and applications. MOS-SIAM series on optimization. SIAM, Philadelphia

    Google Scholar 

  61. Tuzun D, Magent MA, Burke LI (1997) Selection of vehicle routing heuristic using neural networks. Int Trans Oper Res 4(3):211–221

    Article  Google Scholar 

  62. Van Stein B, Emmerich M, Yang Z (2013) Fitness landscape analysis of NK landscapes and vehicle routing problems by expanded barrier trees. EVOLVE-a bridge between probability, set oriented numerics, and evolutionary computation IV. Springer, pp 75–89

    Google Scholar 

  63. Ventresca M, Ombuki-Berman B, Runka A (2013) Predicting genetic algorithm performance on the vehicle routing problem using information theoretic landscape measures. In: European conference on evolutionary computation in combinatorial optimization - EvoCOP 2013. Springer, pp 214–225

    Google Scholar 

  64. Verleysen M, François D (2005) The curse of dimensionality in data mining and time series prediction. In: International work-conference on artificial neural networks. Springer, pp 758–770

    Google Scholar 

  65. Wartiainen P, Kärkkäinen T (2015) Hierarchical, prototype-based clustering of multiple time series with missing values. In: Proceedings of the European symposium on artificial neural networks, computational intelligence and machine learning - ESANN 2015, pp 95–100

    Google Scholar 

  66. Wink S, Back T, Emmerich M (2012) A meta-genetic algorithm for solving the capacitated vehicle routing problem. In: IEEE congress on evolutionary computation - CEC’12, pp 1–8

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank sincerely the main organizers of this research venue: Dr. Jacques Periaux and Dr. Tero Tuovinen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommi Kärkkäinen .

Editor information

Editors and Affiliations

Appendix

Appendix

See Tables 6.4 and 6.5.

Table 6.4 Feature extractors and feature details for the features related to customer and depot positions
Table 6.5 Feature extractors and feature details for the features related to solving attempts, constraints, and feature computation times

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kärkkäinen, T., Rasku, J. (2020). Application of a Knowledge Discovery Process to Study Instances of Capacitated Vehicle Routing Problems. In: Diez, P., Neittaanmäki, P., Periaux, J., Tuovinen, T., Pons-Prats, J. (eds) Computation and Big Data for Transport. Computational Methods in Applied Sciences, vol 54. Springer, Cham. https://doi.org/10.1007/978-3-030-37752-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37752-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37751-9

  • Online ISBN: 978-3-030-37752-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics