Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Bayesian Optimization Approaches for Massively Multi-modal Problems

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2019)

Abstract

The optimization of massively multi-modal functions is a challenging task, particularly for problems where the search space can lead the optimization process to local optima. While evolutionary algorithms have been extensively investigated for these optimization problems, Bayesian Optimization algorithms have not been explored to the same extent. In this paper, we study the behavior of Bayesian Optimization as part of a hybrid approach for solving several massively multi-modal functions. We use well-known benchmarks and metrics to evaluate how different variants of Bayesian Optimization deal with multi-modality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brochu, E., Cora, V.M., de Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning, December 2010. arXiv:1012.2599

  2. Fieldsend, J.E.: Running up those hills: multi-modal search with the niching migratory multi-swarm optimiser. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 2593–2600. IEEE (2014)

    Google Scholar 

  3. Ginsbourger, D., Riche, R.L., Carraro, L.: A multi-points criterion for deterministic parallel global optimization based on Gaussian processes. Technical report, CCSD, March 2008. https://hal.archives-ouvertes.fr/hal-00260579/document

  4. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multi-modal function optimisation. In: Proceedings of the of Second International Conference on Genetic Algorithms and Their Applications, pp. 41–49 (1987)

    Google Scholar 

  5. González, J., Dai, Z., Hennig, P., Lawrence, N.D.: Batch Bayesian optimization via local penalization (2015). arXiv:1505.08052

  6. Guhaniyogi, R., Li, C., Savitsky, T.D., Srivastava, S.: A divide-and-conquer Bayesian approach to large-scale kriging, December 2017. arXiv:1712.09767

  7. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993). https://doi.org/10.1007/BF00941892

    Article  MathSciNet  MATH  Google Scholar 

  8. Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Global Optim. 21(4), 345–383 (2001). https://doi.org/10.1023/A:1012771025575

    Article  MathSciNet  MATH  Google Scholar 

  9. Kvasov, D.E., Sergeyev, Y.D.: Deterministic approaches for solving practical black-box global optimization problems. Adv. Eng. Softw. 80, 58–66 (2015). https://doi.org/10.1016/j.advengsoft.2014.09.014. http://www.sciencedirect.com/science/article/pii/S096599781400163X

    Article  Google Scholar 

  10. Li, X., Engelbrecht, A., Epitropakis, M.G.: Benchmark functions for CEC 2013 special session and competition on niching methods for multimodal function optimization. Technical report, Royal Melbourne Institute of Technology, March 2013. http://goanna.cs.rmit.edu.au/xiaodong/cec13-niching/

  11. Mockus, J.: The Bayesian approach to local optimization. In: Mockus, J. (ed.) Bayesian Approach to Global Optimization. Mathematics and Its Applications, vol. 37, pp. 125–156. Springer, Dordrecht (1989). https://doi.org/10.1007/978-94-009-0909-0_7

    Chapter  MATH  Google Scholar 

  12. Petrowski, A.: A clearing procedure as a niching method for genetic algorithms. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 798–803 (1996). https://doi.org/10.1109/ICEC.1996.542703

  13. Powell, M.J.D.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7(2), 155–162 (1964). https://doi.org/10.1093/comjnl/7.2.155. http://comjnl.oxfordjournals.org/content/7/2/155

    Article  MathSciNet  MATH  Google Scholar 

  14. Preuss, M.: Niching the CMA-ES via nearest-better clustering. In: Proceedings of the 12th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO 2010, pp. 1711–1718. ACM, New York (2010). https://doi.org/10.1145/1830761.1830793

  15. Preuss, M.: Multimodal Optimization by Means of Evolutionary Algorithms. Natural Computing Series. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-07407-8

    Book  MATH  Google Scholar 

  16. Quiñonero-Candela, J., Rasmussen, C.E.: A unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res. 6(Dec), 1939–1959 (2005). http://www.jmlr.org/papers/v6/quinonero-candela05a

    MathSciNet  MATH  Google Scholar 

  17. Rasmussen, C.E., Williams, C.K.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  18. Roman, I., Santana, R., Mendiburu, A., Lozano, J.A.: Dynamic kernel selection criteria for Bayesian optimization. In: BayesOpt 2014: NIPS Workshop on Bayesian Optimization, Montreal (2014). http://bayesopt.github.io/papers/paper13.pdf

  19. Sareni, B., Krahenbuhl, L.: Fitness sharing and niching methods revisited. IEEE Trans. Evol. Comput. 2(3), 97–106 (1998)

    Article  Google Scholar 

  20. Silverman, B.W.: Some aspects of the spline smoothing approach to non-parametric regression curve fitting. J. Roy. Stat. Soc. Series B (Method.) 47(1), 1–52 (1985)

    MathSciNet  MATH  Google Scholar 

  21. Singh, G., Deb, K.: Comparison of multi-modal optimization algorithms based on evolutionary algorithms. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, GECCO 2006, pp. 1305–1312. ACM, New York (2006). https://doi.org/10.1145/1143997.1144200

  22. Srinivas, N., Krause, A., Kakade, S., Seeger, M.: Gaussian process optimization in the bandit setting: no regret and experimental design. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), Haifa, 21–24 June 2010, pp. 1015–1022 (2010). http://www.icml2010.org/papers/422.pdf

  23. Wang, H., van Stein, B., Emmerich, M., Bäck, T.: Time complexity reduction in efficient global optimization using cluster kriging. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 889–896. ACM, New York (2017). https://doi.org/10.1145/3071178.3071321

  24. Wong, K.C., Leung, K.S., Wong, M.H.: Protein structure prediction on a lattice model via multimodal optimization techniques. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO 2010, pp. 155–162. ACM, New York (2010). https://doi.org/10.1145/1830483.1830513

  25. Yin, X., Germay, N.: Investigations on solving the load flow problem by genetic algorithms. Electr. Power Syst. Res. 22(3), 151–163 (1991). https://doi.org/10.1016/0378-7796(91)90001-4. http://www.sciencedirect.com/science/article/pii/0378779691900014

    Article  Google Scholar 

  26. Zhigljavsky, A., Žilinskas, A.: Methods based on statistical models of multimodal functions. In: Zhigljavsky, A., Žilinskas, A. (eds.) Stochastic Global Optimization. Springer Optimization and Its Applications, vol. 9, pp. 149–244. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-74740-8_4

    Chapter  MATH  Google Scholar 

Download references

Acknowledgments

This research has been partially supported by the Basque Government (ELKARTEK programs), and Spanish Ministry of Economy and Competitiveness MINECO (project TIN2016-78365-R). Jose A. Lozano is also supported by BERC 2018-2021 (Basque Government), and Severo Ochoa Program SEV-2017-0718 (Spanish Ministry of Economy, Industry and Competitiveness).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibai Roman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roman, I., Mendiburu, A., Santana, R., Lozano, J.A. (2020). Bayesian Optimization Approaches for Massively Multi-modal Problems. In: Matsatsinis, N., Marinakis, Y., Pardalos, P. (eds) Learning and Intelligent Optimization. LION 2019. Lecture Notes in Computer Science(), vol 11968. Springer, Cham. https://doi.org/10.1007/978-3-030-38629-0_31

Download citation

Publish with us

Policies and ethics