Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Sparse Representation for Device-Free Human Detection and Localization with COTS RFID

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11944))

Abstract

Passive human detection and localization is the basis for a broad range of intelligent scenarios including unmanned supermarket, health monitoring, etc. Existing computer vision or wearable sensor based methods though can obtain high precision, they still face some inherent defects, such as privacy issues, battery power limitations. Based on the human movement induced backscattered signal changes, we propose a device-free human detection and localization system on radio-frequency identification (RFID) devices. The system extracts environment-independent features from both RSSI and phase for dynamic monitoring in the first stage, then the target is further located if the moving human is detected. In particular, an overcomplete dictionary is learned when creating the fingerprint library, which helps to make the representation of the location more compact and computationally simple. Moreover, PCA based dimensionality reduction method is then adopted to acquire valid features to determine the final position. Extensive experiments conducted in real-life office and bedroom demonstrate that the proposed system provides high accuracy for human detection and achieves the average distance error of less than 1 m.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  2. Ali-Loytty, S., Perala, T., Honkavirta, V., Piche, R.: Fingerprint Kalman filter in indoor positioning applications. In: 2009 IEEE Control Applications, (CCA) Intelligent Control, (ISIC), pp. 1678–1683 (2009)

    Google Scholar 

  3. Arshad, S., et al.: Wi-chase: a WiFi based human activity recognition system for sensorless environments. In: IEEE International Symposium on A World of Wireless (2017)

    Google Scholar 

  4. Bu, Y., et al.: RF-dial: an RFID-based 2D human-computer interaction via tag array. In: IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, pp. 837–845, April 2018

    Google Scholar 

  5. Castillo-Cara, M., Lovón-Melgarejo, J., Bravo-Rocca, G., Orozco-Barbosa, L., García-Varea, I.: An empirical study of the transmission power setting for bluetooth-based indoor localization mechanisms. Sensors 17(6), 1318 (2017)

    Article  Google Scholar 

  6. Dan, W., Zhang, D., Xu, C., Wang, Y., Hao, W.: WiDir: walking direction estimation using wireless signals. In: ACM International Joint Conference on Pervasive & Ubiquitous Computing (2016)

    Google Scholar 

  7. Gao, Q., et al.: CSI-based device-free wireless localization and activity recognition using radio image features. IEEE Trans. Veh. Technol. 66(11), 10346–10356 (2017)

    Article  Google Scholar 

  8. Georgievska, S., et al.: Detecting high indoor crowd density with Wi-Fi localization: a statistical mechanics approach. J. Big Data 6(1), 31 (2019)

    Article  Google Scholar 

  9. Gong, Y., Xie, L., Wang, C., Bu, Y., Lu, S.: RF-brush: 3D human-computer interaction via linear tag array. In: 2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS) (2018)

    Google Scholar 

  10. Itoh, K.: Analysis of the phase unwrapping algorithm. Appl. Opt. 21(14), 2470 (1982)

    Article  Google Scholar 

  11. Lau, S.L., König, I., David, K., Parandian, B., Carius-Düssel, C., Schultz, M.: Supporting patient monitoring using activity recognition with a smartphone. In: International Symposium on Wireless Communication Systems (2010)

    Google Scholar 

  12. Pati, Y., Rezaiifar, R., Krishnaprasad, P.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, pp. 40–44 (2009)

    Google Scholar 

  13. Peng, Y., Fan, W., Xin, D., Xing, Z.: An iterative weighted KNN (IW-KNN) based indoor localization method in bluetooth low energy (BLE) environment. In: Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People, & Smart World Congress (2017)

    Google Scholar 

  14. Qian, K., Wu, C., Zhang, Y., Zhang, G., Yang, Z., Liu, Y.: Widar2.0: passive human tracking with a single Wi-Fi link. In: Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services, MobiSys 2018, pp. 350–361 (2018)

    Google Scholar 

  15. Qian, K., Wu, C., Zheng, Y., Liu, Y., Zhou, Z.: PADS: passive detection of moving targets with dynamic speed using phy layer information. In: IEEE International Conference on Parallel & Distributed Systems (2015)

    Google Scholar 

  16. Sample, A.P., Macomber, C., Jiang, L.T., Smith, J.R.: Optical localization of passive uhf RFID tags with integrated leds. In: IEEE International Conference on RFID (2016)

    Google Scholar 

  17. Wang, C., et al.: Multi - touch in the air: device-free finger tracking and gesture recognition via cots RFID. In: IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, pp. 1691–1699, April 2018

    Google Scholar 

  18. Wang, C., Liu, J., Chen, Y., Xie, L., Liu, H.B., Lu, S.: RF-kinect: a wearable RFID-based approach towards 3D body movement tracking. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 2(1), 41:1–41:28 (2018)

    Google Scholar 

  19. Wang, C., Xie, L., Wang, W., Chen, Y., Bu, Y., Lu, S.: RF-ECG: heart rate variability assessment based on cots RFID tag array. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 2(2), 85:1–85:26 (2018)

    Google Scholar 

  20. Wang, J., Vasisht, D., Katabi, D.: RF-IDRAW: virtual touch screen in the air using RF signals. In: ACM Conference on Sigcomm (2014)

    Google Scholar 

  21. Wu, C., Zheng, Y., Xiao, C.: Automatic radio map adaptation for indoor localization using smartphones. IEEE Trans. Mob. Comput. PP(99), 1 (2018)

    Google Scholar 

  22. Xi, W., et al.: Electronic frog eye: counting crowd using WiFi. In: IEEE Conference on Computer Communications, IEEE INFOCOM 2014, pp. 361–369, April 2014

    Google Scholar 

  23. Xu, H., Caramanis, C., Sanghavi, S.: Robust PCA via outlier pursuit. IEEE Trans. Inf. Theory 58(5), 3047–3064 (2012)

    Article  MathSciNet  Google Scholar 

  24. Yang, Z., Zhou, Z., Liu, Y.: From RSSI to CSI: indoor localization via channel response. ACM Comput. Surv. 46(2), 25:1–25:32 (2013)

    Article  Google Scholar 

  25. Yu, G., Zhan, J., Ji, Y., Jie, L., Gao, S.: MoSense: a RF-based motion detection system via off-the-shelf wifi devices. IEEE Internet of Things J. PP(99), 1 (2017)

    Google Scholar 

  26. Yu, J., Na, Z., Liu, X., Deng, Z.: WiFi/PDR-integrated indoor localizationusing unconstrained smartphones. EURASIP J. Wirel. Commun. Network. 2019(1), 41 (2019)

    Article  Google Scholar 

  27. Zhang, S., Mccullagh, P., Nugent, C., Zheng, H.: Activity monitoring using a smart phone’s accelerometer with hierarchical classification. In: Sixth International Conference on Intelligent Environments (2010)

    Google Scholar 

  28. Zhongqin, W., Min, X., Ning, Y., Ruchuan, W., Haiping, H.: Computer vision-assisted region-of-interest rfid tag recognition and localization in multipath-prevalent environments. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 3(29), 1–30 (2019)

    Google Scholar 

  29. Zhu, D., Zhao, B., Wang, S.: Mobile target indoor tracking based on multi-direction weight position Kalman filter. Comput. Netw. 141, 115–127 (2018)

    Article  Google Scholar 

  30. Zhu, S., Wang, S., Zhang, F., Zhang, Y., Feng, Y., Huang, W.: Environmentally adaptive real-time detection of RFID false readings in a new practical scenario. In: 2018 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 338–345, October 2018

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (61601459).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaoyi Zhu or Siye Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, W., Zhu, S., Wang, S., Xie, J., Zhang, Y. (2020). Sparse Representation for Device-Free Human Detection and Localization with COTS RFID. In: Wen, S., Zomaya, A., Yang, L. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2019. Lecture Notes in Computer Science(), vol 11944. Springer, Cham. https://doi.org/10.1007/978-3-030-38991-8_42

Download citation

Publish with us

Policies and ethics