Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Communication-Avoiding Algorithm for Molecular Dynamics Simulation

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11944))

  • 1731 Accesses

Abstract

Molecular dynamics and many similar time-dependent computing tasks are defined as simple state updates over multiple time steps. In recent years, modern supercomputing clusters have enjoyed fast-growing compute capability and moderate-growing memory bandwidth, but their improvement of network bandwidth/latency is limited. In this paper, we propose a new communication-avoiding algorithmic model based on asynchronous communications which, unlike BSP, records and handles multiple iterative states together. The basic idea is to let computation run in small regular time steps while communications over longer dynamic time steps. Computation keeps checking inaccuracies so that the intervals between communications are small in volatile scenarios but longer when dynamics is smooth. This helps reduce the number of data exchanges via network communication and hence improve the overall performance when communication is the bottleneck. We test MD simulation of condensed covalent materials on the Sunway TaihuLight. For best time-to-solution, the general-purpose supercomputer Sunway TaihuLight performs 11.8 K steps/s for a system with 2.1 million silicon atoms and 5.1 K steps/s for 50.4 million silicon atoms. This time-to-solution performance is close to those of state-of-art hardware solution. A software solution using general-purpose supercomputers makes the technology more accessible to the general scientific users.

Supported by National Key R&D Program of China under Grants No. 2017YFB0202000.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shaw, D.E., Grossman, J.P., Bank, J.A., et al.: Anton 2: raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer. In: International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2014, New Orleans, LA, USA, 16–21 November, 2014, pp. 41–53 (2014)

    Google Scholar 

  2. Shaw, D.E., Deneroff, M.M., Dror, R.O., et al.: Anton, a special-purpose machine for molecular dynamics simulation. In: 34th International Symposium on Computer Architecture (ISCA 2007), San Diego, California, USA, 9–13 June, 2007, pp. 1–12 (2007)

    Google Scholar 

  3. Höhnerbach, M., Ismail, A.E., Bientinesi, P.: The vectorization of the tersoff multi-body potential: an exercise in performance portability. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2016, Salt Lake City, UT, USA, 13–18 November, 2016, pp. 69–81 (2016)

    Google Scholar 

  4. Abraham, M.J., Murtola, T., Schulz, R., et al.: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. Softwarex 1–2(C), 19–25 (2015)

    Article  Google Scholar 

  5. Páll, S., Abraham, M.J., Kutzner, C., et al.: Tackling exascale software challenges in molecular dynamics simulations with GROMACS, CoRR, vol. 70, pp. 3–27 (2014)

    Google Scholar 

  6. Phillips, J.C., Sun, Y., Jain, N., et al.: Mapping to irregular torus topologies and other techniques for petascale biomolecular simulation. In: International Conference for High Performance Computing, p. 81 (2014)

    Google Scholar 

  7. Phillips, J.C., et al.: Scalable molecular dynamics with namd. J. Comput. Chem. 26(16), 1781–1802 (2005)

    Article  Google Scholar 

  8. Valiant, L.: A bridging model for parallel computation. Commun. ACM 33(8), 103–111 (1990)

    Article  Google Scholar 

  9. Baffico, L., Bernard, S., Maday, Y., et al.: Parallel-in-time molecular-dynamics simulations. Phys. Rev. E 66(2), 057701 (2002)

    Article  Google Scholar 

  10. Lions, J.-L., et al.: Resolution EDP par unschema en temps parareal. C. R. Acad. Sci. Numer. Anal. 332(7), 661–668 (2001)

    Google Scholar 

  11. Bahi, J.M., Contassot-Vivier, S., Couturier, R.: Evaluation of the asynchronous iterative algorithms in the context of distant heterogeneous clusters. Parallel Comput. 31(5), 439–461 (2005)

    Article  MathSciNet  Google Scholar 

  12. Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., et al.: Silicon nanowires as efficient thermoelectric materials. Nature 451(7175), 168–171 (2008)

    Article  Google Scholar 

  13. Tian, B., Kempa, T.J., Lieber, C.M.: Single nanowire photovoltaics. Chem. Soc. Rev. 38(1), 16–24 (2009)

    Article  Google Scholar 

  14. Yang, N., Zhang, G., Li, B.: Violation of fourier’s law and anomalous heat diffusion in silicon nanowires. Nano Today 5(2), 85–90 (2010)

    Article  Google Scholar 

  15. Schelling, P.K., Phillpot, S.R., Keblinski, P.: Comparison of atomic-level simulation methods for computing thermal conductivity. Phys. Rev. B 65(14), 144306–144317 (2002)

    Article  Google Scholar 

  16. Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37(14), 6991–7000 (1988)

    Article  Google Scholar 

  17. Tersoff, J.: Empirical interatomic potential for silicon with improved elastic properties. Phys. Rev. B 38(14), 9902–9905 (1988)

    Article  Google Scholar 

  18. He, Y., Savic, I., Donadio, D., Galli, G.: Lattice thermal conductivity of semiconducting bulk materials: atomistic simulations. Phys. Chem. Chem. Phys. 14(47), 16209–16222 (2012)

    Article  Google Scholar 

  19. Cruz, C., Termentzidis, K., Chantrenne, P., Kleber, X.: Molecular dynamics simulation for the prediction of thermal conductivity of bulk silicon and silicon nanowires: influence of interatomic potentials and boundary conditions. J. Appl. Phys 110(3), 34309–34316 (2011)

    Article  Google Scholar 

  20. Park, M., Lee, I., Kim, Y.: Lattice thermal conductivity of crystalline and amorphous silicon with and without isotopic effects from the ballistic to diffusive thermal transport regime. J. Appl. Phys. 116(4), 43514–43522 (2014)

    Article  Google Scholar 

  21. Krzeminski, C., Brulin, Q., Cuny, V., et al.: Molecular dynamics simulation of the recrystallization of amorphous Si layers: comprehensive study of the dependence of the recrystallization velocity on the interatomic potential. J. Appl. Phys. 101(12), 6336-4 (2011)

    Article  Google Scholar 

  22. Lee, B.M., Baik, H.K., Seong, B.S., et al.: Molecular-dynamics analysis of the nucleation and crystallization process of Si. Phys. B Condens. Matter 392(1–2), 266–271 (2007)

    Article  Google Scholar 

  23. Hou, C.F., Xu, J., Wang, P., et al.: Petascale molecular dynamics simulation of crystalline silicon on Tianhe-1A. Int. J. High Perform. C. 184(5), 1364–1371 (2013)

    Google Scholar 

  24. Perez, D., Huang, R., Voter, A.F.: Long-time molecular dynamics simulations on massively parallel platforms: a comparison of parallel replica dynamics and parallel trajectory splicing. J. Mat. Res. 33(7), 813–822 (2018)

    Article  Google Scholar 

  25. Elber, R.: Perspective: computer simulations of long time dynamics. J. Chem. Phys. 144(6), 98–103 (2016)

    Article  Google Scholar 

  26. Fu, H., Liao, J., Yang, J., et al.: The sunway TaihuLight supercomputer: system and applications. Sci. China Inf. Sci. 59(7), 072001 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, B., Chen, Y., Hou, C. (2020). A Communication-Avoiding Algorithm for Molecular Dynamics Simulation. In: Wen, S., Zomaya, A., Yang, L. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2019. Lecture Notes in Computer Science(), vol 11944. Springer, Cham. https://doi.org/10.1007/978-3-030-38991-8_6

Download citation

Publish with us

Policies and ethics