Abstract
We propose a convolutional neural network for localising the centres of the optic disc (OD) and fovea in ultra-wide field of view scanning laser ophthalmoscope (UWFoV-SLO) images of the retina. Images captured in both reflectance and autofluorescence (AF) modes, and central pole and eyesteered gazes, were used. The method achieved an OD localisation accuracy of 99.4% within one OD radius, and fovea localisation accuracy of 99.1% within one OD radius on a test set comprising of 1790 images. The performance of fovea localisation in AF images was comparable to the variation between human annotators at this task. The laterality of the image (whether the image is of the left or right eye) was inferred from the OD and fovea coordinates with an accuracy of 99.9%.
P. R. Wakeford—Supported by the EPSRC Centre for Doctoral Training in Applied Photonics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Al-Bander, B., Al-Nuaimy, W., Al-Taee, M.A., Al-Ataby, A., Zheng, Y.: Automatic feature learning method for detection of retinal landmarks. In: Proceedings - 2016 9th International Conference on Developments in eSystems Engineering, pp. 13–18 (2016). https://doi.org/10.1109/DeSE.2016.4
Al-Bander, B., Al-Nuaimy, W., Williams, B.M., Zheng, Y.: Multiscale sequential convolutional neural networks for simultaneous detection of fovea and optic disc. Biomed. Signal Process. Control 40, 91–101 (2018). https://doi.org/10.1016/j.bspc.2017.09.008
Calimeri, F., Marzullo, A., Stamile, C., Terracina, G.: Optic disc detection using fine tuned convolutional neural networks. In: Proceedings - 12th International Conference on Signal Image Technology and Internet-Based Systems, pp. 69–75 (2016). https://doi.org/10.1109/SITIS.2016.20
Croft, D.E., van Hemert, J., Wykoff, C.C., Clifton, D., Verhoek, M., Fleming, A., Brown, D.M.: Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography. Ophthalmic Surg. Lasers Imaging Retina 45(4), 312–317 (2014)
Faust, O., Acharya, R., Ng, E.Y., Ng, K.H., Suri, J.S.: Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review. J. Med. Syst. 36(1), 145–157 (2012). https://doi.org/10.1007/s10916-010-9454-7
Fleming, A.D., Goatman, K.A., Philip, S., Olson, J.A., Sharp, P.F.: Automatic detection of retinal anatomy to assist diabetic retinopathy screening. Phys. Med. Biol. 52(2), 331–345 (2007). https://doi.org/10.1088/0031-9155/52/2/002
Foracchia, M., Grisan, E., Ruggeri, A.: Detection of optic disc in retinal images by means of a geometrical model of vessel structure. IEEE Trans. Med. Imaging 23(10), 1189–1195 (2004). https://doi.org/10.1109/TMI.2004.829331
Haleem, M.S., Han, L., van Hemert, J., Li, B.: Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: a review. Comput. Med. Imaging Graph. 37(7–8), 581–596 (2013). https://doi.org/10.1016/j.compmedimag.2013.09.005
Holz, F.G., Spaide, R.F., Schmitz-Valckenberg, S., Bird, A.C. (eds.): Atlas of Fundus Autofluorscence Imaging. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71994-6
Hoover, A., Goldbaum, M.: Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans. Med. Imaging 22(8), 951–958 (2003). https://doi.org/10.1109/TMI.2003.815900
Jang, Y., Son, J., Park, K.H., Park, S.J., Jung, K.H.: Laterality classification of fundus images using interpretable deep neural network. J. Digit. Imaging 1–6 (2018). https://doi.org/10.1007/s10278-018-0099-2
Kingma, D.P., Ba, J.L.: Adam: A Method for Stochastic Optimization. CoRR abs/1412.6, 1–15 (2014). https://doi.org/10.1016/j.nano.2011.03.005. http://arxiv.org/abs/1412.6980
Marin, D., Gegundez-Arias, M.E., Suero, A., Bravo, J.M.: Obtaining optic disc center and pixel region by automatic thresholding methods on morphologically processed fundus images. Comput. Methods Programs Biomed. 118(2), 173–185 (2015). https://doi.org/10.1016/j.cmpb.2014.11.003
Meng, X., Xi, X., Yang, L., Zhang, G., Yin, Y., Chen, X.: Fast and effective optic disk localization based on convolutional neural network. Neurocomputing 312, 285–295 (2018). https://doi.org/10.1016/j.neucom.2018.05.114
Meyer, M.I., Galdran, A., Mendonça, A.M., Campilho, A.: A pixel-wise distance regression approach for joint retinal optical disc and fovea detection. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 39–47. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_5
Meyer, M.I., Galdran, A., Mendonca, A.M., Campilho, A.: Joint Retinal Optical Disc and Fovea Detection (2018). https://github.com/minesmeyer/od-fovea-regression
Mitra, A., Banerjee, P.S., Roy, S., Roy, S., Setua, S.K.: The region of interest localization for glaucoma analysis from retinal fundus image using deep learning. Comput. Methods Programs Biomed. 165, 25–35 (2018). https://doi.org/10.1016/j.cmpb.2018.08.003
Niemeijer, M., Abrà moff, M.D., van Ginnekena, B.: Fast detection of the optic disc and fovea in color fundus photographs. Med. Image Anal. 13(6), 859–870 (2009). https://doi.org/10.1016/j.media.2009.08.003
Niu, D., Xu, P., Wan, C., Cheng, J., Liu, J.: Automatic localization of optic disc based on deep learning in fundus images. In: 2017 IEEE 2nd International Conference on Signal and Image Processing, pp. 208–212 (2017). https://doi.org/10.1109/SIPROCESS.2017.8124534
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Roy, P.K., Chakravorty, R., Sedai, S., Mahapatra, D., Garnavi, R.: Automatic eye type detection in retinal fundus image using fusion of transfer learning and anatomical features. In: 2016 International Conference on Digital Image Computing: Techniques and Applications, pp. 538–544 (2016). https://doi.org/10.1109/DICTA.2016.7797012
Sinthanayothin, C., Boyce, J.F., Cook, H.L., Williamson, T.H.: Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br. J. Ophthalmol. 83(8), 902–910 (1999). https://doi.org/10.1136/bjo.83.8.902
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout : a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)
Tan, N.M., et al.: Classification of left and right eye retinal images. In: Proceedings of SPIE, vol. 7624 (2010). https://doi.org/10.1117/12.844638. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.844638
Tangelder, G.J., Reus, N.J., Lemij, H.G.: Estimating the clinical usefulness of optic disc biometry for detecting glaucomatous change over time. Eye 20(7), 755–763 (2006). https://doi.org/10.1038/sj.eye.6701993
Tobin, K.W., Chaum, E., Govindasamy, V.P., Karnowski, T.P.: Detection of anatomic structures in human retinal imagery. IEEE Trans. Med. Imaging 26(12), 1729–1739 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Wakeford, P.R. et al. (2020). Optic Disc and Fovea Localisation in Ultra-widefield Scanning Laser Ophthalmoscope Images Captured in Multiple Modalities. In: Zheng, Y., Williams, B., Chen, K. (eds) Medical Image Understanding and Analysis. MIUA 2019. Communications in Computer and Information Science, vol 1065. Springer, Cham. https://doi.org/10.1007/978-3-030-39343-4_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-39343-4_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-39342-7
Online ISBN: 978-3-030-39343-4
eBook Packages: Computer ScienceComputer Science (R0)