Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Real Time Detection of Surface Defects with Inception-Based MobileNet-SSD Detection Network

  • Conference paper
  • First Online:
Advances in Brain Inspired Cognitive Systems (BICS 2019)

Abstract

Effective surface defect detection are of great significance for the production of high quality products. Aiming at real-time detection of surface defect, we propose a reusable and high-efficiency Inception-based MobileNet-SSD method for surface defect inspection in industrial environment. First, convolutional layers for feature extraction used in SSD were replaced by depthwise separable convolutions utilized in MobileNet so that the speed of the network can be faster. Then, the layer in the base network as convolutional feature layer is constructed as Inception which can extract more rich features through multiple convolution combinations of different scales. Finally, predictions from multiple feature maps with different resolutions are combined by the network to naturally handle objects of various sizes. Experimental results on a surface defect dataset containing 2750 images of 5 classes we established confirm that our network has competitive accuracy and is much faster. For 300 × 300 input, ours network achieves 96.1% mAP on DAGM 2007 test at 73FPS on a NVIDIA GTX 1080Ti, outperforming a comparable state-of-the-art FCN model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Han, J., Zhang, D., Hu, X., et al.: Background prior-based salient object detection via deep reconstruction residual. IEEE Trans. Circuits Syst. Video Technol. 25(8), 1309–1321 (2014)

    Google Scholar 

  2. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  3. Hu, H., Liu, Y., Liu, M., et al.: Surface defect classification in large-scale strip steel image collection via hybrid chromosome genetic algorithm. Neurocomputing 181, 86–95 (2016)

    Article  Google Scholar 

  4. Yongzhi, M., Biao, Y., Hongfeng, M.A., et al.: Adaptive segmentation algorithm for rail surface defects image. J. Beijing Univ. Technol. 43(10), 1472–1479 (2017)

    Google Scholar 

  5. Yan, P., Zhang, X., Ding, Y.: Vision inspection of metal surface defects based on infrared imaging. Acta Optica Sin. 31, 0312004 (2011)

    Article  Google Scholar 

  6. Xu, K., Wang, L., Wang, J.: Surface defect recognition of hot-rolled steel plates based on Tetrolet transform. J. Mech. Eng. 52, 13–19 (2016)

    Article  Google Scholar 

  7. Zhu, Q., Ren, J., Barclay, D., et al.: Automatic animal detection from kinect sensed images for livestock monitoring and assessment. In: 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, pp. 1154–1157. IEEE (2015)

    Google Scholar 

  8. Yan, Y., Ren, J., Zhao, H., et al.: Cognitive fusion of thermal and visible imagery for effective detection and tracking of pedestrians in videos. Cogn. Comput. 10(1), 94–104 (2018)

    Article  Google Scholar 

  9. Zheng, J., Liu, Y., Ren, J., et al.: Fusion of block and keypoints based approaches for effective copy-move image forgery detection. Multidimension. Syst. Signal Process. 27(4), 989–1005 (2016)

    Article  MathSciNet  Google Scholar 

  10. Swain, M.J., Ballard, D.H.: Indexing via color histograms. In: Sood, A.K., Wechsler, H. (eds.) Active Perception and Robot Vision. NATO ASI Series (Series F: Computer and Systems Sciences), vol. 83, pp. 261–273. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  11. Conners, R.W., Mcmillin, C.W., Lin, K., et al.: Identifying and locating surface defects in wood: part of an automated lumber processing system. IEEE Trans. Pattern Anal. Mach. Intell. 6, 573–583 (1983)

    Article  Google Scholar 

  12. Jolliffe, I.: Principal Component Analysis. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  13. Wu, X., Cao, K., Gu, X.: A surface defect detection based on convolutional neural network. In: Liu, M., Chen, H., Vincze, M. (eds.) ICVS 2017. LNCS, vol. 10528, pp. 185–194. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68345-4_17

    Chapter  Google Scholar 

  14. Wang, Z., Ren, J., Zhang, D., et al.: A deep-learning based feature hybrid framework for spatiotemporal saliency detection inside videos. Neurocomputing 287, 68–83 (2018)

    Article  Google Scholar 

  15. Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing systems, pp. 91–99 (2015)

    Google Scholar 

  16. Girshick, R., Donahue, J., Darrell, T., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., et al.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  18. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  19. Redmon, J., Divvala, S., Girshick, R., et al.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  20. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  21. Ren, Q., Geng, J., Li, J.: Slighter faster R-CNN for real-time detection of steel strip surface defects. In: 2018 Chinese Automation Congress (CAC), pp. 2173–2178. IEEE (2018)

    Google Scholar 

  22. Li, J., Su, Z., Geng, J., et al.: Real-time detection of steel strip surface defects based on improved YOLO detection network. IFAC-PapersOnLine 51(21), 76–81 (2018)

    Article  Google Scholar 

  23. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  24. Zhang, A., Sun, G., Ren, J., et al.: A dynamic neighborhood learning-based gravitational search algorithm. IEEE Trans. Cybern. 48(1), 436–447 (2016)

    Article  Google Scholar 

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv preprint arXiv:1409.1556

  26. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  27. Sifre, L., Mallat, S.: Rigid-motion scattering for image classification. Ph.D. thesis, pp. 1–3 (2014)

    Google Scholar 

  28. Howard, A.G., Zhu, M., Chen, B., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications (2017). arXiv preprint arXiv:1704.04861

  29. DAGM 2007 Datasets. https://hci.iwr.uni-heidelberg.de/node/3616. Accessed 10 Apr 2017

  30. https://www.vidi-systems.com. Accessed 10 Apr 2017

  31. Yu, Z., Wu, X., Gu, X.: Fully convolutional networks for surface defect inspection in industrial environment. In: Liu, M., Chen, H., Vincze, M. (eds.) Computer Vision Systems. ICVS 2017. LNCS, vol. 10528. Springer, Cham (2017)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by Key Research and Development Plan of Shanxi Province (No. 201703D111023), Key Research and Development Plan of Shanxi Province (No. 201703D111027), Shanxi International Cooperation Project (No. 201803D421039) and Shanxi Scholarship Council of China (No. 2016-044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, J., Zhao, W., Guo, L., Xu, X., Xie, G. (2020). Real Time Detection of Surface Defects with Inception-Based MobileNet-SSD Detection Network. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2019. Lecture Notes in Computer Science(), vol 11691. Springer, Cham. https://doi.org/10.1007/978-3-030-39431-8_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39431-8_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39430-1

  • Online ISBN: 978-3-030-39431-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics