Abstract
Visualization as a means of easy conveyance of ideas plays a key role in communicating linguistic theory through its applications. User-friendly NLP visualization tools allow researchers to get important insights for building, challenging, proving or rejecting their hypotheses. At the same time, visualizations provide general public with some understanding of what computational linguists investigate.
In this paper, we present vec2graph: a ready-to-use Python 3 library visualizing vector representations (for example, word embeddings) as dynamic and interactive graphs. It is aimed at users with beginners’ knowledge of software development, and can be used to easily produce visualizations suitable for the Web. We describe key ideas behind vec2graph, its hyperparameters, and its integration into existing word embedding frameworks.
N. Katricheva and A. Yaskevich—Contributed equally to the paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Belinkov, Y., Glass, J.: Analysis methods in neural language processing: a survey. Trans. Assoc. Comput. Linguist. 7, 49–72 (2019). https://doi.org/10.1162/tacl_a_00254
Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3(Feb), 1137–1155 (2003)
Bostock, M., Ogievetsky, V., Heer, J.: D-3: data-driven documents. IEEE Trans. Vis. Comput. Graph. 17, 2301–9 (2011). https://doi.org/10.1109/TVCG.2011.185
Fares, M., Kutuzov, A., Oepen, S., Velldal, E.: Word vectors, reuse, and replicability: towards a community repository of large-text resources. In: Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22–24 May 2017, Gothenburg, Sweden, pp. 271–276. Linköping University Electronic Press, Linköpings universitet (2017)
Hamilton, W., Clark, K., Leskovec, J., Jurafsky, D.: Inducing domain-specific sentiment lexicons from unlabeled corpora. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 595–605. Association for Computational Linguistics, Austin, November 2016. https://doi.org/10.18653/v1/D16-1057. https://www.aclweb.org/anthology/D16-1057
Healy, K.: Data Visualization: A Practical Introduction. Princeton University Press, Princeton (2018)
Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24(6), 417 (1933)
Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci. 374(2065), 20150202 (2016)
Kutuzov, A., Kuzmenko, E.: WebVectors: a toolkit for building web interfaces for vector semantic models. In: Ignatov, D.I., et al. (eds.) AIST 2016. CCIS, vol. 661, pp. 155–161. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52920-2_15
van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
Miller, G.A.: WordNet: A lexical database for English. Commun. ACM 38(11), 39–41 (1995). https://doi.org/10.1145/219717.219748. http://doi.acm.org/10.1145/219717.219748
Navigli, R., Paolo Ponzetto, S.: BabelNet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artif. Intell. 193, 217–250 (2012). https://doi.org/10.1016/j.artint.2012.07.001
Pearson, K.: On lines and planes of closest fit to systems of points in space. London Edinburgh Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)
Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, Valletta, Malta, pp. 45–50, May 2010
Verlet, L.: Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967). https://doi.org/10.1103/PhysRev.159.98. https://link.aps.org/doi/10.1103/PhysRev.159.98
Wattenberg, M., Viégas, F., Johnson, I.: How to use t-SNE effectively. Distill 1(10), e2 (2016)
Wildgen, W.: From Lullus to cognitive semantics: the evolution of a theory of semantic fields. In: Proceedings of the Twentieth World Congress of Philosophy. University of Bremen (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Katricheva, N., Yaskevich, A., Lisitsina, A., Zhordaniya, T., Kutuzov, A., Kuzmenko, E. (2020). Vec2graph: A Python Library for Visualizing Word Embeddings as Graphs. In: van der Aalst, W., et al. Analysis of Images, Social Networks and Texts. AIST 2019. Communications in Computer and Information Science, vol 1086. Springer, Cham. https://doi.org/10.1007/978-3-030-39575-9_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-39575-9_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-39574-2
Online ISBN: 978-3-030-39575-9
eBook Packages: Computer ScienceComputer Science (R0)