Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Vec2graph: A Python Library for Visualizing Word Embeddings as Graphs

  • Conference paper
  • First Online:
Analysis of Images, Social Networks and Texts (AIST 2019)

Abstract

Visualization as a means of easy conveyance of ideas plays a key role in communicating linguistic theory through its applications. User-friendly NLP visualization tools allow researchers to get important insights for building, challenging, proving or rejecting their hypotheses. At the same time, visualizations provide general public with some understanding of what computational linguists investigate.

In this paper, we present vec2graph: a ready-to-use Python 3 library visualizing vector representations (for example, word embeddings) as dynamic and interactive graphs. It is aimed at users with beginners’ knowledge of software development, and can be used to easily produce visualizations suitable for the Web. We describe key ideas behind vec2graph, its hyperparameters, and its integration into existing word embedding frameworks.

N. Katricheva and A. Yaskevich—Contributed equally to the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    All English word embedding models used were downloaded from the NLPL Vectors repository [4].

  2. 2.

    All Russian word embeddings used were downloaded from RusVectores service [9].

  3. 3.

    https://projector.tensorflow.org/.

  4. 4.

    https://github.com/anvaka/word2vec-graph.

References

  1. Belinkov, Y., Glass, J.: Analysis methods in neural language processing: a survey. Trans. Assoc. Comput. Linguist. 7, 49–72 (2019). https://doi.org/10.1162/tacl_a_00254

    Article  Google Scholar 

  2. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3(Feb), 1137–1155 (2003)

    MATH  Google Scholar 

  3. Bostock, M., Ogievetsky, V., Heer, J.: D-3: data-driven documents. IEEE Trans. Vis. Comput. Graph. 17, 2301–9 (2011). https://doi.org/10.1109/TVCG.2011.185

    Article  Google Scholar 

  4. Fares, M., Kutuzov, A., Oepen, S., Velldal, E.: Word vectors, reuse, and replicability: towards a community repository of large-text resources. In: Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22–24 May 2017, Gothenburg, Sweden, pp. 271–276. Linköping University Electronic Press, Linköpings universitet (2017)

    Google Scholar 

  5. Hamilton, W., Clark, K., Leskovec, J., Jurafsky, D.: Inducing domain-specific sentiment lexicons from unlabeled corpora. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 595–605. Association for Computational Linguistics, Austin, November 2016. https://doi.org/10.18653/v1/D16-1057. https://www.aclweb.org/anthology/D16-1057

  6. Healy, K.: Data Visualization: A Practical Introduction. Princeton University Press, Princeton (2018)

    Google Scholar 

  7. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24(6), 417 (1933)

    Article  Google Scholar 

  8. Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci. 374(2065), 20150202 (2016)

    Article  MathSciNet  Google Scholar 

  9. Kutuzov, A., Kuzmenko, E.: WebVectors: a toolkit for building web interfaces for vector semantic models. In: Ignatov, D.I., et al. (eds.) AIST 2016. CCIS, vol. 661, pp. 155–161. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52920-2_15

    Chapter  Google Scholar 

  10. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

  11. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  12. Miller, G.A.: WordNet: A lexical database for English. Commun. ACM 38(11), 39–41 (1995). https://doi.org/10.1145/219717.219748. http://doi.acm.org/10.1145/219717.219748

    Article  Google Scholar 

  13. Navigli, R., Paolo Ponzetto, S.: BabelNet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artif. Intell. 193, 217–250 (2012). https://doi.org/10.1016/j.artint.2012.07.001

    Article  MathSciNet  MATH  Google Scholar 

  14. Pearson, K.: On lines and planes of closest fit to systems of points in space. London Edinburgh Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)

    Article  Google Scholar 

  15. Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, Valletta, Malta, pp. 45–50, May 2010

    Google Scholar 

  16. Verlet, L.: Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967). https://doi.org/10.1103/PhysRev.159.98. https://link.aps.org/doi/10.1103/PhysRev.159.98

    Article  Google Scholar 

  17. Wattenberg, M., Viégas, F., Johnson, I.: How to use t-SNE effectively. Distill 1(10), e2 (2016)

    Article  Google Scholar 

  18. Wildgen, W.: From Lullus to cognitive semantics: the evolution of a theory of semantic fields. In: Proceedings of the Twentieth World Congress of Philosophy. University of Bremen (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezda Katricheva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Katricheva, N., Yaskevich, A., Lisitsina, A., Zhordaniya, T., Kutuzov, A., Kuzmenko, E. (2020). Vec2graph: A Python Library for Visualizing Word Embeddings as Graphs. In: van der Aalst, W., et al. Analysis of Images, Social Networks and Texts. AIST 2019. Communications in Computer and Information Science, vol 1086. Springer, Cham. https://doi.org/10.1007/978-3-030-39575-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39575-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39574-2

  • Online ISBN: 978-3-030-39575-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics