Abstract
Training of deep models for classification tasks is hindered by local minima problems and vanishing gradients, while unsupervised layer-wise pretraining does not exploit information from class labels. Here, we propose a new regularization technique, called diversifying regularization (DR), which applies a penalty on hidden units at any layer if they obtain similar features for different types of data. For generative models, DR is defined as divergence over the variational posteriori distributions and included in the maximum likelihood estimation as a prior. Thus, DR includes class label information for greedy pretraining of deep belief networks which result in a better weight initialization for fine-tuning methods. On the other hand, for discriminative training of deep neural networks, DR is defined as a distance over the features and included in the learning objective. With our experimental tests, we show that DR can help the backpropagation to cope with vanishing gradient problems and to provide faster convergence and smaller generalization errors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andrieu, C., De Freitas, N., Doucet, A., Jordan, M.I.: An introduction to MCMC for machine learning. Mach. Learn. 50(1–2), 5–43 (2003)
Arnold, L., Ollivier, Y.: Layer-wise learning of deep generative models. CoRR abs/1212.1524 (2012). http://arxiv.org/abs/1212.1524
Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. Adv. Neural Inf. Process. Syst. 19, 153 (2007)
Bengio, Y., et al.: Learning deep architectures for AI. Found. Trends® Mach. Learn. 2(1), 1–127 (2009)
Choi, E., Lee, C.: Feature extraction based on the Bhattacharyya distance. Pattern Recognit. 36(8), 1703–1709 (2003)
Csiszár, I.: Information-type measures of difference of probability distributions and indirect observations. Stud. Sci. Math. Hung. 2, 299–318 (1967)
Doersch, C.: Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908 (2016)
Erhan, D., Manzagol, P.A., Bengio, Y., Bengio, S., Vincent, P.: The difficulty of training deep architectures and the effect of unsupervised pre-training. In: AISTATS, vol. 5, pp. 153–160 (2009)
Fukushima, K., Miyake, S.: Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition. In: Amari, S., Arbib, M.A. (eds.) Competition and Cooperation in Neural Nets. LNBM, vol. 45, pp. 267–285. Springer, Heidelberg (1982). https://doi.org/10.1007/978-3-642-46466-9_18
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org
Goudail, F., Réfrégier, P., Delyon, G.: Bhattacharyya distance as a contrast parameter for statistical processing of noisy optical images. JOSA A 21(7), 1231–1240 (2004)
Hartman, E.J., Keeler, J.D., Kowalski, J.M.: Layered neural networks with Gaussian hidden units as universal approximations. Neural Comput. 2(2), 210–215 (1990)
Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2), 251–257 (1991)
Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160(1), 106–154 (1962)
Jonschkowski, R., Höfer, S., Brock, O.: Contextual learning. CoRR abs/1511.06429 (2015). http://arxiv.org/abs/1511.06429
Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational methods for graphical models. Mach. Learn. 37(2), 183–233 (1999)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)
Larochelle, H., Bengio, Y.: Classification using discriminative restricted Boltzmann machines. In: Proceedings of the 25th International Conference on Machine learning, pp. 536–543. ACM (2008)
Larochelle, H., Bengio, Y., Louradour, J., Lamblin, P.: Exploring strategies for training deep neural networks. J. Mach. Learn. Res. 10, 1–40 (2009)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
LeCun, Y., et al.: Generalization and network design strategies. Connect. Perspect. 143–155 (1989)
Neal, R.M.: Connectionist learning of belief networks. Artif. Intell. 56(1), 71–113 (1992). https://doi.org/10.1016/0004-3702(92)90065-6
Salakhutdinov, R., Hinton, G.E.: Deep boltzmann machines. In: AISTATS, vol. 1, p. 3 (2009)
Salakhutdinov, R., Larochelle, H.: Efficient learning of deep Boltzmann machines. In: AISTATs, vol. 9, pp. 693–700 (2010)
Sutskever, I., Hinton, G.E.: Deep, narrow sigmoid belief networks are universal approximators. Neural Comput. 20, 2629–2636 (2008)
Tieleman, T.: Training restricted Boltzmann machines using approximations to the likelihood gradient. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1064–1071. ACM (2008)
Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance metric learning with application to clustering with side-information. In: NIPS, vol. 15, p. 12 (2002)
You, C.H., Lee, K.A., Li, H.: An SVM kernel with GMM-supervector based on the Bhattacharyya distance for speaker recognition. IEEE Signal Process. Lett. 16(1), 49–52 (2009)
Yuille, A.L.: The convergence of contrastive divergences. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 17, pp. 1593–1600. MIT Press (2005). http://papers.nips.cc/paper/2617-the-convergence-of-contrastive-divergences.pdf
Acknowledgments
We gratefully acknowledge the support of NVIDIA Corporation with the donation of the GTX Titan X GPU used for this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Sulimov, P., Sukmanova, E., Chereshnev, R., Kertész-Farkas, A. (2020). Guided Layer-Wise Learning for Deep Models Using Side Information. In: van der Aalst, W., et al. Analysis of Images, Social Networks and Texts. AIST 2019. Communications in Computer and Information Science, vol 1086. Springer, Cham. https://doi.org/10.1007/978-3-030-39575-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-39575-9_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-39574-2
Online ISBN: 978-3-030-39575-9
eBook Packages: Computer ScienceComputer Science (R0)