Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Conditioned Variational Auto-encoder for Detecting Osteoporotic Vertebral Fractures

  • Conference paper
  • First Online:
Computational Methods and Clinical Applications for Spine Imaging (CSI 2019)

Abstract

Detection of osteoporotic vertebral fractures in CT scans is a particularly challenging task that was never sufficiently addressed. This is due to the large variation among healthy vertebrae and the different shapes a fracture could present itself in. In this paper, we combine a reconstructing conditioned-variational auto-encoder architecture and a discriminating multi-layer-perceptron (MLP) to capture these different shapes. We also introduce a vertebrae-specific loss-weighing regime that maximizes the classification yield. Furthermore, we ‘look into’ the learnt network by investigating the saliency maps, traversing the latent space and demonstrating its smoothness. Finally, we report our results on two datasets, including the publicly available xVertSeg dataset achieving an F1 score of 84%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Williams, A.L., Al-Busaidi, A., Sparrow, P.J., Adams, J.E., Whitehouse, R.W.: Under-reporting of osteoporotic vertebral fractures on computed tomography. Eur. J. Radiol. 69(1), 179–183 (2009)

    Article  Google Scholar 

  2. Genant, H.K., Wu, C.Y., van Kuijk, C., Nevitt, M.C.: Vertebral fracture assessment using a semiquantitative technique. J. Bone Miner. Res. 8(9), 1137–1148 (1993)

    Article  Google Scholar 

  3. Cooper, C., O’neill, T., Silman, A.: European vertebral osteoporosis study group: the epidemiology of vertebral fractures. Bone 14, 89–97 (1993)

    Article  Google Scholar 

  4. Carberry, G.A., Pooler, B.D., Binkley, N., Lauder, T.B., Bruce, R.J., Pickhardt, P.J.: Unreported vertebral body compression fractures at abdominal multidetector CT. Radiology 268(1), 120–126 (2013)

    Article  Google Scholar 

  5. Schreiber, J.J., Anderson, P.A., Rosas, H.G., Buchholz, A.L., Au, A.G.: Hounsfield units for assessing bone mineral density and strength: a tool for osteoporosis management. JBJS 93(11), 1057–1063 (2011)

    Article  Google Scholar 

  6. Tomita, N., Cheung, Y.Y., Hassanpour, S.: Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans. Comput. Biol. Med. 98, 8–15 (2018)

    Article  Google Scholar 

  7. Biffi, C., et al.: Learning interpretable anatomical features through deep generative models: application to cardiac remodeling. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 464–471. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_52

    Chapter  Google Scholar 

  8. Higgins, I., et al.: beta-VAE: learning basic visual concepts with a constrained variational framework. In: International Conference on Learning Representations (2017)

    Google Scholar 

  9. Roy, A.G., Conjeti, S., Sheet, D., Katouzian, A., Navab, N., Wachinger, C.: Error corrective boosting for learning fully convolutional networks with limited data. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 231–239. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_27

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malek Husseini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Husseini, M., Sekuboyina, A., Bayat, A., Menze, B.H., Loeffler, M., Kirschke, J.S. (2020). Conditioned Variational Auto-encoder for Detecting Osteoporotic Vertebral Fractures. In: Cai, Y., Wang, L., Audette, M., Zheng, G., Li, S. (eds) Computational Methods and Clinical Applications for Spine Imaging. CSI 2019. Lecture Notes in Computer Science(), vol 11963. Springer, Cham. https://doi.org/10.1007/978-3-030-39752-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39752-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39751-7

  • Online ISBN: 978-3-030-39752-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics