Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Kinetic Monte Carlo Analysis of the Operation and Reliability of Oxide Based RRAMs

  • Conference paper
  • First Online:
Large-Scale Scientific Computing (LSSC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11958))

Included in the following conference series:

Abstract

By using a stochastic simulation model based on the kinetic Monte Carlo approach, we study the physics, operation and reliability of resistive random-access memory (RRAM) devices based on oxides, including silicon-rich silica (SiO\(_x\)) and hafnium oxide – HfO\(_x\) – a widely used transition metal oxide. The interest in RRAM technology has been increasing steadily in the last ten years, as it is widely viewed as the next generation of non-volatile memory devices. The simulation procedure describes self-consistently electronic charge and thermal transport effects in the three-dimensional (3D) space, allowing the study of the dynamics of conductive filaments responsible for switching. We focus on the study of the reliability of these devices, by specifically looking into how oxygen deficiency in the system affects the switching efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chua, L.: Memristor - the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  2. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(43), 80–83 (2008)

    Article  Google Scholar 

  3. Mehonic, A., et al.: Resistive switching in silicon sub-oxide films. J. Appl. Phys. 111, 074507 (2012)

    Article  Google Scholar 

  4. Chua, L.: Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011)

    Article  Google Scholar 

  5. Yao, J., Zhong, L., Natelson, D., Tour, J.M.: In situ imaging of the conducting filament in a silicon oxide resistive switch. Sci. Rep. 2, 242 (2012)

    Article  Google Scholar 

  6. Yu, S., Guan, X., Wong, H.-S. P.: On the stochastic nature of resistive switching in metal oxide RRAM: physical modeling, Monte Carlo simulation, and experimental characterization. In: 2011 IEEE International Electron Devices Meeting (IEDM), p. 17.3.1, 5–7 December 2011, Washington DC, USA (2011)

    Google Scholar 

  7. Chae, S.C., et al.: Random circuit breaker network model for unipolar resistance switching. Adv. Mater. 20, 1154–1159 (2008)

    Article  Google Scholar 

  8. The ITRS Report 2013. http://www.itrs2.net/2013-itrs.html. Accessed 5 June 2018

  9. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010)

    Article  Google Scholar 

  10. Pershin, Y.V., Di Ventra, M.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23, 881–886 (2010)

    Article  Google Scholar 

  11. Mehonic, A., Kenyon, A.J.: Emulating the electrical activity of the neuron using a silicon oxide RRAM cell. Front. Neurosci. 10, 1–10 (2016)

    Article  Google Scholar 

  12. Kim, S., et al.: Physical electro-thermal model of resistive switching in bi-layered resistance-change memory. Sci. Rep. 3, 1680 (2013)

    Article  Google Scholar 

  13. Sadi, T., Mehonic, A., Montesi, L., Buckwell, M., Kenyon, A., Asenov, A.: Investigation of resistance switching in SiO\(_x\) RRAM cells using a 3D multi-scale kinetic Monte Carlo simulator. J. Phys. Condens. Matter 30(8), 084005 (2018)

    Article  Google Scholar 

  14. Jegert, G.C.: Modeling of leakage currents in high-k dielectrics. Ph.D. dissertation, Technical University of Munich, Germany (2011). http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/44/011/44011419.pdf. Accessed 5 June 2018

  15. Buckwell, M., Montesi, L., Hudziak, S., Mehonic, A., Kenyon, A.J.: Conductance tomography of conductive filaments in intrinsic silicon-rich silica RRAM. Nanoscale 7(43), 18030–18035 (2015)

    Article  Google Scholar 

  16. Sadi, T., et al.: Advanced physical modeling of SiO\(_x\) resistive random access memories. In: International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 6–8 September 2016, Nuremberg, Germany, pp. 149–152 (2016)

    Google Scholar 

  17. Brivio, S., Spiga, S.: Stochastic circuit breaker network model for bipolar resistance switching memories. J. Comput. Electron. 16(4), 1154–1166 (2017)

    Article  Google Scholar 

  18. Sadi, T., Asenov, A.: Microscopic KMC modeling of oxide RRAMs. In: Nikolov, G., Kolkovska, N., Georgiev, K. (eds.) NMA 2018. LNCS, vol. 11189, pp. 290–297. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10692-8_32

    Chapter  Google Scholar 

  19. Vandelli, L., Padovani, A., Larcher, L., Southwick, R.G., Knowlton, W.B., Bersuker, G.: A physical model of the temperature dependence of the current through SiO\(_2\)/HfO\(_2\) stacks. IEEE Trans. Electron Devices 58, 2878–2887 (2011)

    Article  Google Scholar 

  20. Mehonic, A., et al.: Structural changes and conductance thresholds in metal-free intrinsic SiO\(_x\) resistive random access memory. J. Appl. Phys. 117, 124505 (2015)

    Article  Google Scholar 

  21. Sadi, T., Thobel, J.-L., Dessenne, F.: Self-consistent electrothermal Monte Carlo simulation of single InAs nanowire channel metal-insulator field-effect transistors. J. Appl. Phys. 108, 084506 (2010)

    Article  Google Scholar 

  22. McPherson, J., Kim, J.-Y., Shanware, A., Mogul, H.: Thermochemical description of dielectric breakdown in high dielectric constant materials. Appl. Phys. Lett. 82, 2121–2123 (2003)

    Article  Google Scholar 

  23. Medina-Bailon, C., et al.: Multisubband ensemble Monte Carlo analysis of tunneling leakage mechanisms in ultrascaled FDSOI, DGSOI, and FinFET devices. IEEE Trans. Electron Devices 66, 1145–1152 (2019)

    Article  Google Scholar 

  24. Medina-Bailon, C., et al.: Impact of the trap attributes on the gate leakage mechanisms in a 2D MS-EMC nanodevice simulator. In: Nikolov, G., Kolkovska, N., Georgiev, K. (eds.) NMA 2018. LNCS, vol. 11189, pp. 273–280. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10692-8_30

    Chapter  Google Scholar 

Download references

Acknowledgment

The authors thank the Engineering and Physical Sciences Research Council (EPSRC−UK) for funding under grant agreement EP/K016776/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toufik Sadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sadi, T., Badami, O., Georgiev, V., Asenov, A. (2020). Kinetic Monte Carlo Analysis of the Operation and Reliability of Oxide Based RRAMs. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2019. Lecture Notes in Computer Science(), vol 11958. Springer, Cham. https://doi.org/10.1007/978-3-030-41032-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41032-2_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41031-5

  • Online ISBN: 978-3-030-41032-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics