Abstract
By using a stochastic simulation model based on the kinetic Monte Carlo approach, we study the physics, operation and reliability of resistive random-access memory (RRAM) devices based on oxides, including silicon-rich silica (SiO\(_x\)) and hafnium oxide – HfO\(_x\) – a widely used transition metal oxide. The interest in RRAM technology has been increasing steadily in the last ten years, as it is widely viewed as the next generation of non-volatile memory devices. The simulation procedure describes self-consistently electronic charge and thermal transport effects in the three-dimensional (3D) space, allowing the study of the dynamics of conductive filaments responsible for switching. We focus on the study of the reliability of these devices, by specifically looking into how oxygen deficiency in the system affects the switching efficiency.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chua, L.: Memristor - the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)
Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(43), 80–83 (2008)
Mehonic, A., et al.: Resistive switching in silicon sub-oxide films. J. Appl. Phys. 111, 074507 (2012)
Chua, L.: Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011)
Yao, J., Zhong, L., Natelson, D., Tour, J.M.: In situ imaging of the conducting filament in a silicon oxide resistive switch. Sci. Rep. 2, 242 (2012)
Yu, S., Guan, X., Wong, H.-S. P.: On the stochastic nature of resistive switching in metal oxide RRAM: physical modeling, Monte Carlo simulation, and experimental characterization. In: 2011 IEEE International Electron Devices Meeting (IEDM), p. 17.3.1, 5–7 December 2011, Washington DC, USA (2011)
Chae, S.C., et al.: Random circuit breaker network model for unipolar resistance switching. Adv. Mater. 20, 1154–1159 (2008)
The ITRS Report 2013. http://www.itrs2.net/2013-itrs.html. Accessed 5 June 2018
Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010)
Pershin, Y.V., Di Ventra, M.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23, 881–886 (2010)
Mehonic, A., Kenyon, A.J.: Emulating the electrical activity of the neuron using a silicon oxide RRAM cell. Front. Neurosci. 10, 1–10 (2016)
Kim, S., et al.: Physical electro-thermal model of resistive switching in bi-layered resistance-change memory. Sci. Rep. 3, 1680 (2013)
Sadi, T., Mehonic, A., Montesi, L., Buckwell, M., Kenyon, A., Asenov, A.: Investigation of resistance switching in SiO\(_x\) RRAM cells using a 3D multi-scale kinetic Monte Carlo simulator. J. Phys. Condens. Matter 30(8), 084005 (2018)
Jegert, G.C.: Modeling of leakage currents in high-k dielectrics. Ph.D. dissertation, Technical University of Munich, Germany (2011). http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/44/011/44011419.pdf. Accessed 5 June 2018
Buckwell, M., Montesi, L., Hudziak, S., Mehonic, A., Kenyon, A.J.: Conductance tomography of conductive filaments in intrinsic silicon-rich silica RRAM. Nanoscale 7(43), 18030–18035 (2015)
Sadi, T., et al.: Advanced physical modeling of SiO\(_x\) resistive random access memories. In: International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 6–8 September 2016, Nuremberg, Germany, pp. 149–152 (2016)
Brivio, S., Spiga, S.: Stochastic circuit breaker network model for bipolar resistance switching memories. J. Comput. Electron. 16(4), 1154–1166 (2017)
Sadi, T., Asenov, A.: Microscopic KMC modeling of oxide RRAMs. In: Nikolov, G., Kolkovska, N., Georgiev, K. (eds.) NMA 2018. LNCS, vol. 11189, pp. 290–297. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10692-8_32
Vandelli, L., Padovani, A., Larcher, L., Southwick, R.G., Knowlton, W.B., Bersuker, G.: A physical model of the temperature dependence of the current through SiO\(_2\)/HfO\(_2\) stacks. IEEE Trans. Electron Devices 58, 2878–2887 (2011)
Mehonic, A., et al.: Structural changes and conductance thresholds in metal-free intrinsic SiO\(_x\) resistive random access memory. J. Appl. Phys. 117, 124505 (2015)
Sadi, T., Thobel, J.-L., Dessenne, F.: Self-consistent electrothermal Monte Carlo simulation of single InAs nanowire channel metal-insulator field-effect transistors. J. Appl. Phys. 108, 084506 (2010)
McPherson, J., Kim, J.-Y., Shanware, A., Mogul, H.: Thermochemical description of dielectric breakdown in high dielectric constant materials. Appl. Phys. Lett. 82, 2121–2123 (2003)
Medina-Bailon, C., et al.: Multisubband ensemble Monte Carlo analysis of tunneling leakage mechanisms in ultrascaled FDSOI, DGSOI, and FinFET devices. IEEE Trans. Electron Devices 66, 1145–1152 (2019)
Medina-Bailon, C., et al.: Impact of the trap attributes on the gate leakage mechanisms in a 2D MS-EMC nanodevice simulator. In: Nikolov, G., Kolkovska, N., Georgiev, K. (eds.) NMA 2018. LNCS, vol. 11189, pp. 273–280. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10692-8_30
Acknowledgment
The authors thank the Engineering and Physical Sciences Research Council (EPSRC−UK) for funding under grant agreement EP/K016776/1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Sadi, T., Badami, O., Georgiev, V., Asenov, A. (2020). Kinetic Monte Carlo Analysis of the Operation and Reliability of Oxide Based RRAMs. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2019. Lecture Notes in Computer Science(), vol 11958. Springer, Cham. https://doi.org/10.1007/978-3-030-41032-2_49
Download citation
DOI: https://doi.org/10.1007/978-3-030-41032-2_49
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-41031-5
Online ISBN: 978-3-030-41032-2
eBook Packages: Computer ScienceComputer Science (R0)