Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-objective ACO Algorithm for WSN Layout: InterCriteria Analisys

  • Conference paper
  • First Online:
Large-Scale Scientific Computing (LSSC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11958))

Included in the following conference series:

  • 1221 Accesses

Abstract

One of the key objectives during wireless sensor networks deployment is full coverage of the monitoring region with a minimal number of sensors and minimized energy consumption of the network. In this paper we apply multi-objective Ant Colony Optimization (ACO) to solve this hard, from the computational point of view telecommunication problem. The number of ants is one of the key algorithm parameters in the ACO and it is important to find the optimal number of ants needed to achieve good solutions with minimal computational resources. The InterCriteria Analisys is applied in order to study the influence of ants number on the algorithm performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deb, K., Pratap, A., Agrawal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  2. Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    Book  Google Scholar 

  3. Fidanova, S., Shindarov, M., Marinov, P.: Multi-objective ant algorithm for wireless sensor network positioning. Comptes Randus de l’Academie Bulgare des Sciences 66(3), 353–360 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Hernandez, H., Blum, C.: Minimum Energy Broadcasting in Wireless Sensor Networks: An ant Colony Optimization Approach for a Realistic Antenna Model. J. of Applied Soft Computing 11(8), 5684–5694 (2011)

    Article  Google Scholar 

  5. Konstantinidis, A., Yang, K., Zhang, Q., Zainalipour-Yazti, D.: A multi-objective Evolutionary Algorithm for the deployment and Power Assignment Problem in Wireless sensor Networks. J. of Computer networks 54(6), 960–976 (2010)

    Article  Google Scholar 

  6. Molina, G., Alba, E., El-G, Talbi: Optimal Sensor Network Layout Using Multi-Objective Metaheuristics. Universal Computer Science 14(15), 2549–2565 (2008)

    Google Scholar 

  7. Paek J., Kothari N., Chintalapudi K., Rangwala S. and Govindan R. (2005), The Performance of a Wireless Sensor Network for Structural Health Monitoring, In Proc. of 2nd European Workshop on Wireless Sensor Networks, Istanbul, Turkey

    Google Scholar 

  8. Werner-Allen, G., Lorinez, K., Welsh, M., Marcillo, O., Jonson, J., Ruiz, M., Lees, J.: Deploying a Wireless Sensor Network on an Active Volcano. IEEE Internet Computing 10(2), 18–25 (2006)

    Article  Google Scholar 

  9. Yuce, M.R., Ng, S.W., Myo, N.L., Khan, J.Y., Liu, W.: Wireless Body Sensor Network Using Medical Implant Band. Medical Systems 31(6), 467–474 (2007)

    Article  Google Scholar 

  10. K. Atanassov, Index Matrices: Towards an Augmented Matrix Calculus, Studies in Computational Intelligence, 573, 2014

    Google Scholar 

  11. K. Atanassov, Intuitionistic Fuzzy Sets, VII ITKR Session, Sofia, 20–23 June 1983, Reprinted: Int J Bioautomation, 20(S1), 2016, S1–S6

    Google Scholar 

  12. K. Atanassov, Review and New Results on Intuitionistic Fuzzy Sets, Mathematical Foundations of Artificial Intelligence Seminar, Sofia, 1988, Preprint IM-MFAIS-1-88, Reprinted: Int J Bioautomation, 20(S1), 2016, S7–S16

    Google Scholar 

  13. Atanassov, K., Mavrov, D., Atanassova, V.: Intercriteria Decision Making: A New Approach for Multicriteria Decision Making. Based on Index Matrices and Intuitionistic Fuzzy Sets, Issues in IFSs and GNs 11, 1–8 (2014)

    MATH  Google Scholar 

  14. Ikonomov, N., Vassilev, P., Roeva, O.: ICrAData - Software for InterCriteria Analysis. Int J Bioautomation 22(1), 1–10 (2018)

    Article  Google Scholar 

  15. D.B. Jourdan, Wireless Sensor Network Planning with Application to UWB Localization in GPS-denied Environments, Massachusets Institute of Technology, PhD thesis, 2000

    Google Scholar 

  16. S. Ribagin, Shannon, A., Atanassov, K., Intuitionistic fuzzy evaluations of the elbow joint range of motion, Advances in Intelligent Systems and Computing, Volume 401, 2016, 225–230

    Google Scholar 

  17. Todinova, S., Mavrov, D., Krumova, S., Marinov, P., Atanassova, V., Atanassov, K., Taneva, S.G.: Blood plasma thermograms dataset analysis by means of InterCriteria and correlation analyses for the case of colorectal cancer. Int J Bioautomation 20(1), 115–124 (2016)

    Google Scholar 

  18. V. Traneva, Atanassova V., Tranev S. Index matrices as a decision-making tool for job appointment, Springer Nature Switzerland AG, G. Nikolov et al. (Eds.): NMA 2018, LNCS 11189, 1–9, 2019

    Google Scholar 

  19. P. Vassilev, L. Todorova, V. Andonov, An auxiliary technique for InterCriteria Analysis via a three dimensional index matrix, Notes on Intuitionistic Fuzzy Sets, Vol. 21, 2015, No. 2, 71–76

    Google Scholar 

  20. Wolf, S., Mezz, P.: Evolutionary Local Search for the Minimum Energy Broadcast Problem. In: Cotta, C., van Hemezl, J. (eds.) VOCOP 2008. Lecture Notes in Computer Sciences, vol. 4972, pp. 61–72. Springer, Germany (2008)

    Google Scholar 

Download references

Acknowledgment

This work is partially supported by the Projects: KP-06-N22/1 “Theoretical Research and Applications of InterCriteria Analysis” and by the Bulgarian Scientific Fund by the granr DN 12/5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefka Fidanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fidanova, S., Roeva, O. (2020). Multi-objective ACO Algorithm for WSN Layout: InterCriteria Analisys. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2019. Lecture Notes in Computer Science(), vol 11958. Springer, Cham. https://doi.org/10.1007/978-3-030-41032-2_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41032-2_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41031-5

  • Online ISBN: 978-3-030-41032-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics