Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Margin Constraint for Low-Shot Learning

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12047))

Included in the following conference series:

  • 1391 Accesses

Abstract

Low-shot learning aims to recognize novel visual categories with limited examples, which is mimicking the human visual system and remains a challenging research problem. In this paper, we introduce the margin constraint in loss function for the low-shot learning field to enhance the model’s discriminative power. Additionally, we adopt the novel categories’ normalized feature vectors as the corresponding classification weight vectors directly, in order to provide an instant classification performance on the novel categories without retraining. Experiments show that our method provides a better generalization and outperforms the previous methods on the low-shot leaning benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  2. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of International Conference on Machine Learning (2017)

    Google Scholar 

  3. Gidaris, S., Komodakis, N.: Dynamic few-shot visual learning without forgetting. In: Proceedings of Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  4. Hariharan, B., Girshick, R.: Low-shot visual recognition by shrinking and hallucinating features. In: Proceedings of Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  6. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  7. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: Proceedings of International Conference on Machine Learning Workshop (2015)

    Google Scholar 

  8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of Conference on Neural Information Processing Systems (2012)

    Google Scholar 

  9. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: SphereFace: deep hypersphere embedding for face recognition. In: Proceedings of Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  10. Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional neural networks. In: Proceedings of International Conference on Machine Learning (2016)

    Google Scholar 

  11. Luo, C., Zhan, J., Xue, X., Wang, L., Ren, R., Yang, Q.: Cosine normalization: using cosine similarity instead of dot product in neural networks. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11139, pp. 382–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01418-6_38

    Chapter  Google Scholar 

  12. Paszke, A., et al.: Automatic differentiation in PyTorch. In: Proceedings of Conference on Neural Information Processing Systems Workshop (2017)

    Google Scholar 

  13. Qi, H., Brown, M., Lowe, D.G.: Low-shot learning with imprinted weights. In: Proceedings of Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  14. Qiao, S., Liu, C., Shen, W., Yuille, A.L.: Few-shot image recognition by predicting parameters from activations. In: Proceedings of Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  15. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: Proceedings of International Conference on Learning Representations (2017)

    Google Scholar 

  16. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  17. Schmidhuber, J., Zhao, J., Wiering, M.: Shifting inductive bias with success-story algorithm, adaptive Levin search, and incremental self-improvement. Mach. Learn. 28(1), 105–130 (1997)

    Article  Google Scholar 

  18. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Proceedings of Conference on Neural Information Processing Systems (2017)

    Google Scholar 

  19. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: Proceedings of Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  20. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: Proceedings of Conference on Neural Information Processing Systems (2016)

    Google Scholar 

  21. Wah, C., Branson, S., Perona, P., Belongie, S.: Multiclass recognition and part localization with humans in the loop. In: Proceedings of International Conference on Computer Vision (2011)

    Google Scholar 

  22. Wang, F., Cheng, J., Liu, W., Liu, H.: Additive margin softmax for face verification. IEEE Signal Process. Lett. 25(7), 926–930 (2018)

    Article  Google Scholar 

  23. Wang, F., Xiang, X., Cheng, J., Yuille, A.L.: NormFace: \({\rm L}_2\) hypersphere embedding for face verification. In: Proceedings of the 25th ACM International Conference on Multimedia (2017)

    Google Scholar 

  24. Wang, H., et al.: CosFace: large margin cosine loss for deep face recognition. In: Proceedings of Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaotian Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, X., Wang, Y. (2020). Margin Constraint for Low-Shot Learning. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W. (eds) Pattern Recognition. ACPR 2019. Lecture Notes in Computer Science(), vol 12047. Springer, Cham. https://doi.org/10.1007/978-3-030-41299-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41299-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41298-2

  • Online ISBN: 978-3-030-41299-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics