Abstract
Gait is a kind of attractive feature for human identification at a distance. It can be regarded as a kind of temporal signal. At the same time the human body shape can be regarded as the signal in the spatial domain. In the proposed method, we try to extract discriminative feature from video sequences in the spatial and temporal domains by only one network, Spatial-Temporal Graph Attention Network (STGAN). In spatial domain, we designed one branch to select some distinguished regions and enhance their contribution. It can make the network focus on these distinguished regions. We also constructed another branch, a Spatial-Temporal Graph (STG), to discover the relationship between frames and the variation of a region in temporal domain. The proposed method can extract gait feature in the two domains, and the two branches in the model can be trained end to end. The experimental results on two popular datasets, CASIA-B and OU-ISIR Treadmill-B, show the proposed method can improve gait recognition obviously.
The work is partly supported by the Science Foundation of Shenzhen (Grant No. 20170504160426188).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
An, W., Liao, R., Yu, S., Huang, Y., Yuen, P.C.: Improving gait recognition with 3D pose estimation. In: Zhou, J., et al. (eds.) CCBR 2018. LNCS, vol. 10996, pp. 137–147. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97909-0_15
Ariyanto, G., Nixon, M.S.: Model-based 3D gait biometrics. In: International Joint Conference on Biometrics, pp. 1–7 (2011)
Bashir, K., Xiang, T., Gong, S.: Gait recognition using gait entropy image. In: International Conference on Crime Detection and Prevention, pp. 1–6 (2010)
Bruna, J., Zaremba, W., Szlam, A., Lecun, Y.: Spectral networks and locally connected networks on graphs. CoRR abs\(/\)1312.6203 (2013)
Chao, H., He, Y., Zhang, J., Feng, J.: GaitSet: regarding gait as a set for cross-view gait recognition. In: AAAI (2019)
Du, T., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)
Duvenaud, D., et al.: Convolutional networks on graphs for learning molecular fingerprints. In: International Conference on Neural Information Processing Systems, pp. 2224–2232 (2015)
Feng, Y., Li, Y., Luo, J.: Learning effective gait features using LSTM. In: International Conference on Pattern Recognition, pp. 325–330 (2017)
Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61 (2009)
He, Y., Zhang, J., Shan, H., Wang, L.: Multi-task gans for view-specific feature learning in gait recognition. IEEE Trans. Inform. Forensics Secur. 14(1), 102–113 (2018)
Henaff, M., Bruna, J., Lecun, Y.: Deep convolutional networks on graph-structured data. arXiv:abs/1506.05163 (2015)
Hu, M., Wang, Y., Zhang, Z., Little, J.J., Huang, D.: View-invariant discriminative projection for multi-view gait-based human identification. IEEE Trans. Inform. Forensics Secur. 8(12), 2034–2045 (2013)
Han, J., Bir, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316 (2006)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (2016)
Kusakunniran, W., Wu, Q., Zhang, J., Li, H.: Support vector regression for multi-view gait recognition based on local motion feature selection. In: Computer Vision and Pattern Recognition (2010)
Kusakunniran, W., Qiang, W., Zhang, J., Li, H., Wang, L.: Recognizing gaits across views through correlated motion co-clustering. IEEE Trans. Image Process. 23(2), 696–709 (2014)
Li, R., Tapaswi, M., Liao, R., Jia, J., Urtasun, R., Fidler, S.: Situation recognition with graph neural networks. In: IEEE International Conference on Computer Vision (ICCV), pp. 4183–4192 (2017)
Li, X., Makihara, Y., Xu, C., Muramatsu, D., Yagi, Y., Ren, M.: Gait energy response function for clothing-invariant gait recognition. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10112, pp. 257–272. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54184-6_16
Liao, R., Cao, C., Garcia, E.B., Yu, S., Huang, Y.: Pose-based temporal-spatial network (PTSN) for gait recognition with carrying and clothing variations. In: Zhou, J., et al. (eds.) CCBR 2017. LNCS, vol. 10568, pp. 474–483. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69923-3_51
Makihara, Y., et al.: The OU-ISIR gait database comprising the treadmill dataset. IPSJ Trans. Comput. Vis. Appl. 4, 53–62 (2012)
Makihara, Y., Sagawa, R., Mukaigawa, Y., Echigo, T., Yagi, Y.: Gait recognition using a view transformation model in the frequency domain. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 151–163. Springer, Heidelberg (2006). https://doi.org/10.1007/11744078_12
Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for graphs. In: the 33rd International Conference on Machine Learning, pp. 2014–2023 (2016)
Shiraga, K., Makihara, Y., Muramatsu, D., Echigo, T., Yagi, Y.: GEINet: view-invariant gait recognition using a convolutional neural network. In: International Conference on Biometrics, pp. 1–8 (2016)
Sun, Y., Liang, Z., Yi, Y., Qi, T., Wang, S.: Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline). In: 15th European Conference on Computer Vision (ECCV) (2018)
Urtasun, R., Fua, P.: 3D tracking for gait characterization and recognition. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp. 17–22 (2004)
Vaswani, A., et al.: Attention is all you need. In: The 31st Conference on Neural Information Processing Systems (2017)
Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018)
Wang, C., Zhang, J., Pu, J., Yuan, X., Wang, L.: Chrono-gait image: a novel temporal template for gait recognition. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 257–270. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_19
Wang, X. Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018)
Wu, Z., Huang, Y., Wang, L., Wang, X., Tan, T.: A comprehensive study on cross-view gait based human identification with deep cnns. IEEE Trans. Pattern Anal. Mach. Intell. 39(2), 209–226 (2017)
Xing, X., Wang, K., Yan, T., Lv, Z.: Complete canonical correlation analysis with application to multi-view gait recognition. Pattern Recogn. 50(C), 107–117 (2016)
Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: AAAI (2018)
Yu, S., Chen, H., Wang, Q., Shen, L., Huang, Y.: Invariant feature extraction for gait recognition using only one uniform model. Neurocomputing 239(C), 81–93 (2017)
Yu, S., et al.: GaitGANv2: Invariant gait feature extraction using generative adversarial networks. Pattern Recogn. 87, 179–189 (2019)
Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: International Conference on Pattern Recognition, pp. 441–444 (2006)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, X., An, W., Yu, S., Guo, W., GarcĂa, E.B. (2020). Spatial-Temporal Graph Attention Network for Video-Based Gait Recognition. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W. (eds) Pattern Recognition. ACPR 2019. Lecture Notes in Computer Science(), vol 12047. Springer, Cham. https://doi.org/10.1007/978-3-030-41299-9_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-41299-9_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-41298-2
Online ISBN: 978-3-030-41299-9
eBook Packages: Computer ScienceComputer Science (R0)