Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards Personalized Radio-Chemotherapy – Learning from Clinical Data vs. Model Optimization

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2020)

Abstract

We summarize results of our research studies on models of combined anticancer radio- and chemotherapy and their comparison with real clinical data. We use two mathematical techniques, which, to our knowledge, have not been applied simultaneously: optimal control theory and survival analysis. We recall results of analytical optimization of combined chemo-radio-therapy for a simple model of tumor growth with respect to the order, in which these two modes of treatment should be applied. Then we study both structural and parametric sensitivity of this model and related optimal control problem. Afterwards, we present results of survival analysis based on the Kaplan-Meier curves for different protocols of chemo-radio-therapy and compare them with real clinical data and results of optimal treatment protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Świerniak, A., Kimmel, M., Smieja, J., Puszynski, K., Psiuk-Maksymowicz, K.: System Engineering Approach to Planning Anticancer Therapies. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28095-0

    Book  MATH  Google Scholar 

  2. Schättler, H., Ledzewicz, U.: Optimal control for mathematical models of cancer therapies. IAM, vol. 42. Springer, New York (2015). https://doi.org/10.1007/978-1-4939-2972-6

    Book  MATH  Google Scholar 

  3. Geng, C., Paganetti, H., Grassberger, C.: Prediction of treatment response for combined chemo- and radiation therapy for non-small cell lung cancer patients using a bio-mathematical model. Sci. Rep. 7, 13542 (2017)

    Article  Google Scholar 

  4. Curran, W.J., et al.: Sequential vs concurrent chemoradiation for stage III nonsmall cell lung cancer: randomized phase III trial RTOG 9410. JNCI J. Natl Cancer Inst. 103(19), 1452–1460 (2011)

    Article  Google Scholar 

  5. Dolbniak, M., Kardynska, M., Smieja, J.: Sensitivity of combined chemo-and antiangiogenic therapy results in different models describing cancer growth. Discr. Continuous Dyn. Syst. Ser. B 23, 145–160 (2018)

    Article  MathSciNet  Google Scholar 

  6. Dudley, W.N., Wickham, R., Coombs, N.: An introduction to survival statistics: kaplan-meier analysis. J. Adv. Pract. Oncol. 7(1), 91–100 (2016)

    Google Scholar 

  7. Bajgier, P., Fujarewicz, K., Swierniak, A.: Effects of pharmacokinetics and DNA repair on the structure of optimal controls in a simple model of radio-chemotherapy. In: Proceedings of the MMAR Conference, pp. 686–691 (2018)

    Google Scholar 

  8. Dolbniak, M., Smieja, J., Swierniak, A.: Structural sensitivity of control models arising in combined chemo-radiotherapy. In: Proceedings of the MMAR Conference, pp. 339–344 (2018)

    Google Scholar 

  9. Skipper, H.E., Schabel, F., Wilcox, W.: Experimental evaluation of potential anticancer agents. XIII. on the criteria and kinetics associated with curability of experimental leukemia. Cancer Chemother. Rep. 35, 1–111 (1964)

    Google Scholar 

  10. Fowler, J.F.: The linear-quadratic formula and progress in fractionated radiotherapy. Br. J. Radiol. 62, 679–694 (1989)

    Article  Google Scholar 

  11. Gerlee, P.: The model muddle in search of tumor growth laws. Cancer Res. 73(8), 2407–2411 (2013)

    Article  Google Scholar 

  12. Lee, J.Y., Kim, M.-S., Kim, E.H., Chung, N., Jeong, Y.K.: Retrospective growth kinetics and radiosensitivity analysis of various human xenograft models. Lab. Anim. Res. 32(4), 187–193 (2016). https://doi.org/10.5625/lar.2016.32.4.187

    Article  Google Scholar 

  13. Wolkowicz, S., et al.: Prediction of lung cancer patients’ response to combined chemo-radiotherapy using a personalized hybrid model. Mathematica Applicanda 47(2), 219–229 (2019)

    Article  Google Scholar 

  14. Bajger, P., Fujarewicz, K., Swierniak, A.: Optimal control in a model of chemotherapy-induced radiosensilization. Mathematica Applicanda 47(1), 81–91 (2019)

    Article  MathSciNet  Google Scholar 

  15. Radu-Emil, P., Radu-Codrut, D.: Nature-Inspired Optimization Algorithms for Fuzzy Controlled Servo Systems. Butterworth-Heinemann, Oxford (2019)

    Google Scholar 

  16. Król, D., Lasota, T., Trawiński, B., Trawiński, K.: Investigation of evolutionary optimization methods of TSK fuzzy model for real estate appraisal. Int. J. Hybrid Intell. Syst. 5(3), 111–128 (2008)

    Article  Google Scholar 

  17. Swierniak, A., Smieja, J., Mura, M., Bajger, P.: Modeling and optimization of radio-chemotherapy. Adv. Intell. Syst. Comput. 1033, 223–233 (2020)

    Google Scholar 

Download references

Acknowledgment

The Authors would like to thank for financial support of their research. The study is partially supported by National Science Committee, Poland, Grant no. 2016/21/B/ST7/02241 and partially by Silesian University of Technology Grant no. 02/010/BK18/0102.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Świerniak, A., Śmieja, J., Fujarewicz, K., Suwiński, R. (2020). Towards Personalized Radio-Chemotherapy – Learning from Clinical Data vs. Model Optimization. In: Nguyen, N., Jearanaitanakij, K., Selamat, A., Trawiński, B., Chittayasothorn, S. (eds) Intelligent Information and Database Systems. ACIIDS 2020. Lecture Notes in Computer Science(), vol 12033. Springer, Cham. https://doi.org/10.1007/978-3-030-41964-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41964-6_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41963-9

  • Online ISBN: 978-3-030-41964-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics