Abstract
We present a method for robust high-speed quadrotor flight through unknown cluttered environments using integrated perception and control. Motivated by experiments in which the difficulty of accurate state estimation was a primary limitation on speed, our method forgoes maintaining a map in favor of using only instantaneous depth information in the local frame. This provides robustness in the presence of significant state estimate uncertainty. Additionally, we present approximation methods augmented with spatial partitioning data structures that enable low-latency, real-time reactive control. The probabilistic formulation provides a natural way to integrate reactive obstacle avoidance with arbitrary navigation objectives. We validate the method using a simulated quadrotor race through a forest at high speeds in the presence of increasing state estimate noise. We pair our method with a motion primitive library and compare with a global path-generation and pathfollowing approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barry, A.J.: High-speed autonomous obstacle avoidance with pushbroom stereo, PhD Thesis, MIT (2016)
Barry, A.J., Tedrake, R.: Pushbroom stereo for high-speed navigation in cluttered environments. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE (2015) 3046–3052
Daftry, S., Zeng, S., Khan, A., Dey, D., Melik-Barkhudarov, N., Bagnell, J.A., Hebert, M.: Robust monocular flight in cluttered outdoor environments. arXiv preprint arXiv:1604.04779 (2016)
Liu, S., Watterson, M., Tang, S., Kumar, V.: High speed navigation for quadrotors with limited onboard sensing. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), IEEE (2016) 1484–1491
Bateux, Q., Marchand, E.: Histograms-based visual servoing. IEEE Robotics and Automation Letters 2(1) (2017) 80–87
Scherer, S., Singh, S., Chamberlain, L., Elgersma, M.: Flying fast and low among obstacles: Methodology and experiments. The International Journal of Robotics Research 27(5) (2008) 549–574
Beyeler, A., Zu.erey, J.C., Floreano, D.: Vision-based control of near-obstacle flight. Autonomous robots 27(3) (2009) 201–219
Ross, S., Melik-Barkhudarov, N., Shankar, K.S., Wendel, A., Dey, D., Bagnell, J.A., Hebert, M.: Learning monocular reactive uav control in cluttered natural environments. In: Robotics and Automation (ICRA), 2013 IEEE International Conference on, IEEE (2013) 1765–1772
Conroy, J., Gremillion, G., Ranganathan, B., Humbert, J.S.: Implementation of wide-field integration of optic flow for autonomous quadrotor navigation. Autonomous robots 27(3) (2009) 189–198
Hyslop, A.M., Humbert, J.S.: Autonomous navigation in three-dimensional urban environments using wide-field integration of optic flow. Journal of guidance, control, and dynamics 33(1) (2010) 147–159
Nieuwenhuisen, M., Behnke, S.: Hierarchical planning with 3d local multiresolution obstacle avoidance for micro aerial vehicles. In: ISR/Robotik 2014; 41st International Symposium on Robotics; Proceedings of, VDE (2014) 1–7
Du Toit, N.E., Burdick, J.W.: Probabilistic collision checking with chance constraints. IEEE Transactions on Robotics 27(4) (2011) 809–815
Blackmore, L., Ono, M., Williams, B.C.: Chance-constrained optimal path planning with obstacles. IEEE Transactions on Robotics 27(6) (2011) 1080–1094
Ono, M., Pavone, M., Kuwata, Y., Balaram, J.: Chance-constrained dynamic programming with application to risk-aware robotic space exploration. Autonomous Robots 39(4) (2015) 555–571
Luders, B., Kothari, M., How, J.P.: Chance constrained rrt for probabilistic robustness to environmental uncertainty. In: AIAA Guidance, Navigation, and Control Conference, Guidance, Navigation, and Control. (2010)
Janson, L., Schmerling, E., Pavone, M.: Monte carlo motion planning for robot trajectory optimization under uncertainty. International Symposium on Robotics Research (ISRR) (2015)
Majumdar, A., Tedrake, R.: Funnel libraries for real-time robust feedback motion planning. CoRR abs/1601.04037 (2016)
Majumdar, A., Tedrake, R.: Robust online motion planning with regions of finite time invariance. In: Algorithmic Foundations of Robotics X. Springer (2013) 543–558
Tedrake, R., Manchester, I.R., Tobenkin, M., Roberts, J.W.: Lqr-trees: Feedback motion planning via sums-of-squares verification. The International Journal of Robotics Research (2010)
Matthies, L., Brockers, R., Kuwata, Y., Weiss, S.: Stereo vision-based obstacle avoidance for micro air vehicles using disparity space. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), IEEE (2014) 3242–3249
Pan, J., Chitta, S., Manocha, D.: Probabilistic collision detection between noisy point clouds using robust classification. In: International Symposium on Robotics Research (ISRR). (2011) 1–16
Pan, J., Manocha, D.: Fast probabilistic collision checking for sampling-based motion planning using locality-sensitive hashing. The International Journal of Robotics Research (2016) 0278364916640908
Richter, C., Vega-Brown, W., Roy, N.: Bayesian learning for safe high-speed navigation in unknown environments. In: Proceedings of the International Symposium on Robotics Research (ISRR 2015), Sestri Levante, Italy (2015)
Van Den Berg, J., Abbeel, P., Goldberg, K.: Lqg-mp: Optimized path planning for robots with motion uncertainty and imperfect state information. The International Journal of Robotics Research 30(7) (2011) 895–913
Tedrake, R.: Drake: A planning, control, and analysis toolbox for nonlinear dynamical systems (2014)
Mellinger, D., Michael, N., Kumar, V.: Trajectory generation and control for precise aggressive maneuvers with quadrotors. Int. J. Rob. Res. 31(5) (April 2012) 664–674
Meier, L., Tanskanen, P., Heng, L., Lee, G.H., Fraundorfer, F., Pollefeys, M.: Pixhawk: A micro aerial vehicle design for autonomous flight using onboard computer vision. Auton. Robots 33(1-2) (August 2012) 21–39
Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: Octomap: An efficient probabilistic 3d mapping framework based on octrees. Auton. Robots 34(3) (April 2013) 18–206
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Florence, P., Carter, J., Tedrake, R. (2020). Integrated Perception and Control at High Speed: Evaluating Collision Avoidance Maneuvers Without Maps. In: Goldberg, K., Abbeel, P., Bekris, K., Miller, L. (eds) Algorithmic Foundations of Robotics XII. Springer Proceedings in Advanced Robotics, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-43089-4_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-43089-4_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-43088-7
Online ISBN: 978-3-030-43089-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)