Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

MILPIBEA: Algorithm for Multi-objective Features Selection in (Evolving) Software Product Lines

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2020)

Abstract

Software Product Lines Engineering (SPLE) proposes techniques to model, create and improve groups of related software systems in a systematic way, with different alternatives formally expressed, e.g., as Feature Models. Selecting the ‘best’ software system(s) turns into a problem of improving the quality of selected subsets of software features (components) from feature models, or as it is widely known, Feature Configuration. When there are different independent dimensions to assess how good a software product is, the problem becomes even more challenging – it is then a multi-objective optimisation problem. Another big issue for software systems is evolution where software components change. This is common in the industry but, as far as we know, there is no algorithm designed to the particular case of multi-objective optimisation of evolving software product lines. In this paper we present MILPIBEA, a novel hybrid algorithm which combines the scalability of a genetic algorithm (IBEA) with the accuracy of a mixed-integer linear programming solver (IBM ILOG CPLEX). We also study the behaviour of our solution (MILPIBEA) in contrast with SATIBEA, a state-of-the-art algorithm in static software product lines. We demonstrate that MILPIBEA outperforms SATIBEA on average, especially for the most challenging problem instances, and that MILPIBEA is the one that continues to improve the quality of the solutions when SATIBEA stagnates (in the evolving context).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ramirez, A., Romero, J.R., Ventura, S.: A survey of many-objective optimisation in search-based software engineering. J. Syst. Softw. 149, 382–395 (2019)

    Article  Google Scholar 

  2. Metzger, A., Pohl, K.: Software product line engineering and variability management: achievements and challenges. In: FSE, pp. 70–84 (2014)

    Google Scholar 

  3. Neto, J.C., da Silva, C.H., Colanzi, T.E., Amaral, A.M.M.M.: Are mas profitable to search-based PLA design? IET Softw. 13(6), 587–599 (2019)

    Article  Google Scholar 

  4. Nair, V., et al.: Data-driven search-based software engineering. In: MSR, pp. 341–352 (2018)

    Google Scholar 

  5. Harman, M., Jia, Y., Krinke, J., Langdon, W.B., Petke, J., Zhang, Y.: Search based software engineering for software product line engineering: a survey and directions for future work. In: SPLC, pp. 5–18 (2014)

    Google Scholar 

  6. Henard, C., Papadakis, M., Harman, M., Le Traon, Y.: Combining multi-objective search and constraint solving for configuring large software product lines. In: ICSE, pp. 517–528 (2015)

    Google Scholar 

  7. Saber, T., Brevet, D., Botterweck, G., Ventresque, A.: Is seeding a good strategy in multi-objective feature selection when feature models evolve? Inf. Softw. Technol. 95, 266–280 (2018)

    Article  Google Scholar 

  8. Guo, J., et al.: Smtibea: a hybrid multi-objective optimization algorithm for configuring large constrained software product lines. Softw. Syst. Model. 18(2), 1447–1466 (2019)

    Article  Google Scholar 

  9. Yu, H., Shi, K., Guo, J., Fan, G., Yang, X., Chen, L.: Combining constraint solving with different MOEAs for configuring large software product lines: a case study. In: COMPSAC, vol. 1, pp. 54–63 (2018)

    Google Scholar 

  10. Saber, T., Marques-Silva, J., Thorburn, J., Ventresque, A.: Exact and hybrid solutions for the multi-objective VM reassignment problem. IJAIT 26(01), 1760004 (2017)

    Google Scholar 

  11. Saber, T., Ventresque, A., Marques-Silva, J., Thorburn, J., Murphy, L.: Milp for the multi-objective VM reassignment problem. ICTA I, 41–48 (2015)

    Google Scholar 

  12. Saber, T., Gandibleux, X., O’Neill, M., Murphy, L., Ventresque, A.: A comparative study of multi-objective machine reassignment algorithms for data centres. J. Heuristics 26(1), 119–150 (2019). https://doi.org/10.1007/s10732-019-09427-8

    Article  Google Scholar 

  13. Pleuss, A., Botterweck, G., Dhungana, D., Polzer, A., Kowalewski, S.: Model-driven support for product line evolution on feature level. J. Syst. Softw. 85(10), 2261–2274 (2012)

    Article  Google Scholar 

  14. Sayyad, A.S., Menzies, T., Ammar, H.: On the value of user preferences in search-based software engineering: a case study in software product lines. In: ICSE, pp. 492–501 (2013)

    Google Scholar 

  15. Xue, Y., Li, Y.F.: Multi-objective integer programming approaches for solving optimal feature selection problem: a new perspective on multi-objective optimization problems in SBSE. In: ICSE, pp. 1231–1242 (2018)

    Google Scholar 

  16. Brevet, D., Saber, T., Botterweck, G., Ventresque, A.: Preliminary study of multi-objective features selection for evolving software product lines. In: Sarro, F., Deb, K. (eds.) SSBSE 2016. LNCS, vol. 9962, pp. 274–280. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47106-8_23

    Chapter  Google Scholar 

  17. Fonseca, C.M., Paquete, L., López-Ibánez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: CEC, pp. 1157–1163 (2006)

    Google Scholar 

  18. Shi, K., et al.: Mutation with local searching and elite inheritance mechanism in multi-objective optimization algorithm: a case study in software product line. Int. J. Softw. Eng. Knowl. Eng. 29(09), 1347–1378 (2019)

    Article  Google Scholar 

  19. Saber, T., Delavernhe, F., Papadakis, M., O’Neill, M., Ventresque, A.: A hybrid algorithm for multi-objective test case selection. In: CEC, pp. 1–8 (2018)

    Google Scholar 

  20. Saber, T., Ventresque, A., Brandic, I., Thorburn, J., Murphy, L.: Towards a multi-objective VM reassignment for large decentralised data centres. In: UCC, pp. 65–74 (2015)

    Google Scholar 

  21. Saber, T., Ventresque, A., Gandibleux, X., Murphy, L.: GenNePi: a multi-objective machine reassignment algorithm for data centres. In: HM, pp. 115–129 (2014)

    Google Scholar 

Download references

Acknowledgment

This work was supported by Science Foundation Ireland grant 13/RC/2094.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takfarinas Saber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saber, T., Brevet, D., Botterweck, G., Ventresque, A. (2020). MILPIBEA: Algorithm for Multi-objective Features Selection in (Evolving) Software Product Lines. In: Paquete, L., Zarges, C. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2020. Lecture Notes in Computer Science(), vol 12102. Springer, Cham. https://doi.org/10.1007/978-3-030-43680-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43680-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43679-7

  • Online ISBN: 978-3-030-43680-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics