Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Learning the Designer’s Preferences to Drive Evolution

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12104))

Abstract

This paper presents the Designer Preference Model, a data-driven solution that pursues to learn from user generated data in a Quality-Diversity Mixed-Initiative Co-Creativity (QD MI-CC) tool, with the aims of modelling the user’s design style to better assess the tool’s procedurally generated content with respect to that user’s preferences. Through this approach, we aim for increasing the user’s agency over the generated content in a way that neither stalls the user-tool reciprocal stimuli loop nor fatigues the user with periodical suggestion handpicking. We describe the details of this novel solution, as well as its implementation in the MI-CC tool the Evolutionary Dungeon Designer. We present and discuss our findings out of the initial tests carried out, spotting the open challenges for this combined line of research that integrates MI-CC with Procedural Content Generation through Machine Learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alvarez, A., Dahlskog, S., Font, J., Togelius, J.: Empowering quality diversity in dungeon design with interactive constrained MAP-Elites. In: 2019 IEEE Conference on Games (CoG), pp. 1–8 (2019)

    Google Scholar 

  2. Alvarez, A., Dahlskog, S., Font, J., Holmberg, J., Johansson, S.: Assessing aesthetic criteria in the evolutionary dungeon designer. In: Proceedings of the 13th International Conference on the Foundations of Digital Games, FDG 2018 (2018)

    Google Scholar 

  3. Alvarez, A., Dahlskog, S., Font, J., Holmberg, J., Nolasco, C., Österman, A.: Fostering creativity in the mixed-initiative evolutionary dungeon designer. In: Proceedings of the 13th International Conference on the Foundations of Digital Games, FDG 2018 (2018)

    Google Scholar 

  4. Baldwin, A., Dahlskog, S., Font, J.M., Holmberg, J.: Mixed-initiative procedural generation of dungeons using game design patterns. In: Proceedings of the IEEE Conference Computational Intelligence and Games (CIG), pp. 25–32 (2017)

    Google Scholar 

  5. Baldwin, A., Dahlskog, S., Font, J.M., Holmberg, J.: Towards pattern-based mixed-initiative dungeon generation. In: Proceedings of the 12th International Conference on the Foundations of Digital Games, FDG 2017, pp. 74:1–74:10. ACM, New York (2017)

    Google Scholar 

  6. Donmez, P., Carbonell, J.G.: Proactive learning: cost-sensitive active learning with multiple imperfect oracles. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 619–628. ACM (2008)

    Google Scholar 

  7. Gravina, D., Khalifa, A., Liapis, A., Togelius, J., Yannakakis, G.N.: Procedural content generation through quality diversity. In: 2019 IEEE Conference on Games (CoG), pp. 1–8 (2019)

    Google Scholar 

  8. Gravina, D., Liapis, A., Yannakakis, G.: Surprise search: beyond objectives and novelty. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, GECCO 2016, pp. 677–684. ACM, New York (2016)

    Google Scholar 

  9. Guzdial, M., Liao, N., Riedl, M.: Co-creative level design via machine learning. In: Joint Proceedings of the AIIDE 2018 Workshops Co-Located with 14th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2018), Edmonton, Canada, 13–14 November 2018 (2018)

    Google Scholar 

  10. Khalifa, A., Lee, S., Nealen, A., Togelius, J.: Talakat: bullet hell generation through constrained map-elites. In: Proceedings of The Genetic and Evolutionary Computation Conference, pp. 1047–1054. ACM (2018)

    Google Scholar 

  11. Kimbrough, S.O., Koehler, G.J., Lu, M., Wood, D.H.: On a feasible-infeasible two-population (FI-2Pop) genetic algorithm for constrained optimization: distance tracing and no free lunch. Eur. J. Oper. Res. 190(2), 310–327 (2008)

    Article  MathSciNet  Google Scholar 

  12. Lehman, J., Risi, S., Clune, J.: Creative generation of 3D objects with deep learning and innovation engines. In: Proceedings of the 7th International Conference on Computational Creativity (2016)

    Google Scholar 

  13. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

    Article  Google Scholar 

  14. Liapis, A., Yannakakis, G.N., Togelius, J.: Adapting models of visual aesthetics for personalized content creation. IEEE Trans. Comput. Intell. AI Games 4(3), 213–228 (2012)

    Article  Google Scholar 

  15. Liapis, A., Yannakakis, G.N., Togelius, J.: Generating map sketches for strategy games. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 264–273. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37192-9_27

    Chapter  Google Scholar 

  16. Liapis, A., Yannakakis, G.N., Togelius, J.: Designer modeling for sentient sketchbook. In: 2014 IEEE Conference on Computational Intelligence and Games, pp. 1–8, August 2014. https://doi.org/10.1109/CIG.2014.6932873

  17. Liapis, A., Yannakakis, G.N., Alexopoulos, C., Lopes, P.: Can computers foster human users’ creativity? Theory and praxis of mixed-initiative co-creativity. Digit. Cult. Educ. 8(2), 136–153 (2016)

    Google Scholar 

  18. Liapis, A., Yannakakis, G., Togelius, J.: Designer modeling for personalized game content creation tools. In: Artificial Intelligence and Game Aesthetics - Papers from the 2013 AIIDE Workshop, Technical Report, vol. WS-13-19, pp. 11–16. AI Access Foundation (2013)

    Google Scholar 

  19. Lucas, P., Martinho, C.: Stay awhile and listen to 3buddy, a co-creative level design support tool. In: Goel, A.K., Jordanous, A., Pease, A. (eds.) Proceedings of the Eighth International Conference on Computational Creativity, Atlanta, Georgia, USA, 19–23 June 2017, pp. 205–212 (2017)

    Google Scholar 

  20. Machado, T., Gopstein, D., Nealen, A., Togelius, J.: Pitako-recommending game design elements in Cicero. In: 2019 IEEE Conference on Games (CoG), pp. 1–8. IEEE (2019)

    Google Scholar 

  21. Mouret, J.B., Clune, J.: Illuminating search spaces by mapping elites. arXiv preprint arXiv:1504.04909 (2015)

  22. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolutionary computation. Front. Robot. AI 3, 40 (2016)

    Article  Google Scholar 

  23. Secretan, J., Beato, N., D’Ambrosio, D., Rodriguez, A., Campbell, A., Stanley, K.: Picbreeder: evolving pictures collaboratively online. In: Proceedings of Computer Human Interaction Conference, pp. 1759–1768, April 2008

    Google Scholar 

  24. Shaker, N., Togelius, J., Nelson, M.J.: Procedural Content Generation in Games: A Textbook and an Overview of Current Research. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42716-4

    Book  Google Scholar 

  25. Shaker, N., Shaker, M., Togelius, J.: Ropossum: an authoring tool for designing, optimizing and solving cut the rope levels. In: AIIDE (2013)

    Google Scholar 

  26. Simard, P.Y., et al.: Machine teaching: a new paradigm for building machine learning systems (2017)

    Google Scholar 

  27. Smith, G., Whitehead, J., Mateas, M.: Tanagra: reactive planning and constraint solving for mixed-initiative level design. IEEE Trans. Comput. Intell. AI Games 3(3), 201–215 (2011)

    Article  Google Scholar 

  28. Stanton, C., Clune, J.: Curiosity search: producing generalists by encouraging individuals to continually explore and acquire skills throughout their lifetime. PLOS ONE 11(9), 1–20 (2016)

    Article  Google Scholar 

  29. Summerville, A., et al.: Procedural content generation via machine learning (PCGML). IEEE Trans. Games 10(3), 257–270 (2018)

    Article  Google Scholar 

  30. Treanor, M., et al.: AI-based game design patterns. In: Proceedings of the 10th International Conference on the Foundations of Digital Games 2015. Society for the Advancement of Digital Games (2015)

    Google Scholar 

  31. Yannakakis, G.N., Liapis, A., Alexopoulos, C.: Mixed-initiative co-creativity. In: Proceedings of the 9th Conference on the Foundations of Digital Games (2014)

    Google Scholar 

  32. Yannakakis, G.N., Togelius, J.: Artificial Intelligence and Games, vol. 2. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63519-4

    Book  Google Scholar 

Download references

Acknowledgements

The Evolutionary Dungeon Designer is part of the project The Evolutionary World Designer, supported by The Crafoord Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Alvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alvarez, A., Font, J. (2020). Learning the Designer’s Preferences to Drive Evolution. In: Castillo, P.A., Jiménez Laredo, J.L., Fernández de Vega, F. (eds) Applications of Evolutionary Computation. EvoApplications 2020. Lecture Notes in Computer Science(), vol 12104. Springer, Cham. https://doi.org/10.1007/978-3-030-43722-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43722-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43721-3

  • Online ISBN: 978-3-030-43722-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics