Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Power Domain Based Multiple Access for IoT Deployment: Two-Way Transmission Mode and Performance Analysis

  • Chapter
  • First Online:
Convergence of Artificial Intelligence and the Internet of Things

Part of the book series: Internet of Things ((ITTCC))

  • 901 Accesses

Abstract

As one of the promising radio access techniques in two-way relaying network, we consider Power Domain based Multiple Access (PDMA) and such PDMA is effective way to deploy in 5G communication networks. In this paper, a cooperative PDMA two-way scheme with two-hop transmission is proposed to enhance the outage performance under consideration on how exact successive interference cancellation (SIC) performs at each receiver. In the proposed scheme, performance gap of two NOMA users are examined, and power allocation factors are main impairment in such performance evaluation. In order to reveal the benefits of the proposed scheme, we choose full-duplex at relay to improve bandwidth efficiency. As important result, its achieved outage probability is mathematical analyzed with imperfect SIC taken into account. Our examination shows that the proposed scheme can significantly outperforms existing schemes in terms of achieving a acceptable outage probability, i.e. a lower outage probability given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ding, Z., Liu, Y., Choi, J., Sun, Q., Elkashlan, M., Chih-Lin, I., Poor, H.V.: Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Commun. Mag. 55, 185–191 (2017)

    Google Scholar 

  2. Liu, Y., Qin, Z., Elkashlan, M., Ding, Z., Nallanathan, A., Hanzo, L.: Nonorthogonal multiple access for 5G and beyond. Proc. IEEE 105, 2347–2381 (2017)

    Article  Google Scholar 

  3. Ding, Z., Lei, X., Karagiannidis, G.K., Schober, R., Yuan, J., Bhargava, V.: A survey on non-orthogonal multiple access for 5G networks: research challenges and future trends. IEEE J. Sel. Areas Commun. 35, 2181–2195 (2017)

    Article  Google Scholar 

  4. Liu, Y., Qin, Z., Elkashlan, M., Gao, Y., Hanzo, L.: Enhancing the physical layer security of non-orthogonal multiple access in large-scale networks. IEEE Trans. Wireless Commun. 16, 1656–1672 (2017)

    Article  Google Scholar 

  5. Liu, Y., Ding, Z., Elkashlan, M., Poor, H.V.: Cooperative nonorthogonal multiple access with simultaneous wireless information and power transfer. IEEE J. Select. Areas Commun. 34, 938–953 (2016)

    Article  Google Scholar 

  6. Ding, Z., Yang, Z., Fan, P., Poor, H.V.: On the performance of nonorthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Process. Lett. 21, 1501–1505 (2014)

    Article  Google Scholar 

  7. Saito, Y., Benjebbour, A., Kishiyama, Y., Nakamura, T.: Systemlevel performance of downlink non-orthogonal multiple access (NOMA) under various environments. IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–5 (2015)

    Google Scholar 

  8. Ding, Z., Fan, P., Poor, V.: Impact of user pairing on 5G nonorthogonal multiple access downlink transmissions. IEEE Trans. Veh. Technol. 65, 6010–6023 (2015)

    Article  Google Scholar 

  9. Do, D.-T., Nguyen, H.-S., Voznak, M., Nguyen, T.-S.: Interference cancellation at receivers in cache-enabled wireless networks. Radioengineering 26, 869–877 (2017)

    Google Scholar 

  10. Nguyen, X.-X., Do, D.-T.: Optimal power allocation and throughput performance of full-duplex DF relaying networks with wireless power transfer-aware channel. EURASIP J. Wireless Commun. Netw. 152 (2017)

    Google Scholar 

  11. Nguyen, X.-X., Do, D.-T.: Maximum harvested energy policy in full-duplex relaying networks with SWIPT. Int. J. Commun. Syst. (Wiley) 30 (2017)

    Google Scholar 

  12. Nguyen, T.L., Do, D.T.: A new look at AF two-way relaying networks: energy harvesting architecture and impact of co-channel interference. Ann. Telecommun. 72, 669–678 (2017)

    Article  Google Scholar 

  13. Nguyen, K.-T., Do, D.-T., Nguyen, X.-X., Nguyen, N.-T., Ha, D.-H.: Wireless information and power transfer for full duplex relaying networks: performance analysis. Radioengineering, 53–62 (2015)

    Google Scholar 

  14. Do, D-.T., Van Nguyen, M.-S.: NOMA in downlink SDMA with limited feedback: performance analysis and optimization. Wireless Personal Communications (Springer), pp. 1–20. Online First (2019)

    Google Scholar 

  15. Nguyen, T.-L., Do, D.T.: Exploiting impacts of intercell interference on SWIPT-assisted non-orthogonal multiple access. Wireless Commun. Mobile Comput. 2018, 1–12 (2018)

    MathSciNet  Google Scholar 

  16. Do, D.-T., Le, C.-B.: Application of NOMA in wireless system with wireless power transfer scheme: outage and ergodic capacity performance analysis. Sensors 18, 3501 (2018)

    Google Scholar 

  17. Yue, X., Liu, Y., Kang, S., Nallanathan, A., Ding, Z.: Outage performance of full/half-duplex user relaying in NOMA systems. In: IEEE International Conference on Communications (ICC), Paris, France, pp. 1-6 (2017)

    Google Scholar 

  18. Ding, Z., Peng, M., Poor, H.V.: Cooperative non-orthogonal multiple access in 5G systems. IEEE Commun. Lett. 19, 1462–1465 (2015)

    Article  Google Scholar 

  19. Kim, J.-B., Lee, I.-H.: Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Commun. Lett. 19, 2037–2040 (2015)

    Article  Google Scholar 

  20. Liu, X., Wang, X., Liu, Y.: Power allocation and performance analysis of the collaborative NOMA assisted relaying systems in 5G. China Commun. 14, 50–60 (2017)

    Article  Google Scholar 

  21. Do, D.-T., Van Nguyen, M.-S., Hoang, T.-A., Voznak, M.: NOMA-assisted multiple access scheme for IoT deployment: relay selection model and secrecy performance improvement. Sensors 19, 736 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh-Thuan Do .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Proof of Proposition 1

\(O{P_1}\) can be obtained

$$\begin{aligned} O{P_1}= & {} 1 - \underbrace{\Pr \left( {{{\left| {{h_1}} \right| }^2} \ge \frac{{\gamma _0^1}}{{{\alpha _1}{\rho _s}}}\left( {{\alpha _2}{\rho _s}{{\left| {{h_2}} \right| }^2} + {\rho _r}{{\left| f \right| }^2} + 1} \right) } \right) }_{ \buildrel \varDelta \over = {\mathcal{O}_3}}\nonumber \\&\times \underbrace{\left( {1 - {F_{{{\left| {{g_1}} \right| }^2}}}\left( {\frac{{\gamma _0^1}}{{\left( {{\alpha _3} - {\alpha _4}\gamma _0^1} \right) {\rho _r}}}} \right) } \right) }_{ \buildrel \varDelta \over = {\mathcal{O}_4}} \end{aligned}$$
(18)

It need be computed these outage expressions as below

$$\begin{aligned} \begin{aligned} {\mathcal{O}_3} =&\Pr \left( {{{\left| {{h_1}} \right| }^2} \ge \frac{{\gamma _0^1}}{{{\alpha _1}{\rho _s}}}\left( {{\alpha _2}{\rho _s}{{\left| {{h_2}} \right| }^2} + {\rho _r}{{\left| f \right| }^2} + 1} \right) } \right) \\ =&\Pr \left( {1 - {F_{{{\left| {{h_1}} \right| }^2}}}\left( {\frac{{\gamma _0^1}}{{{\alpha _1}{\rho _s}}}\left( {{\alpha _2}{\rho _s}{{\left| {{h_2}} \right| }^2} + {\rho _r}{{\left| f \right| }^2} + 1} \right) } \right) } \right) \end{aligned} \end{aligned}$$
(19)

After the implementation of the calculation, we have

$$\begin{aligned} \begin{aligned} {\mathcal{O}_3}\left( {x,y} \right) =&{E_{{{\left| {{h_1}} \right| }^2}}}\left\{ {\Pr \left( {{{\left| {{h_1}} \right| }^2} \ge \frac{{\gamma _0^1}}{{{\upsilon _1}{\rho _s}}}\left( {{\alpha _2}{\rho _s}{{\left| {{h_2}} \right| }^2} + {\rho _r}{{\left| f \right| }^2} + 1} \right) } \right) } \right\} \\ =&\int \limits _0^\infty {{f_{{{\left| f \right| }^2}}}\left( x \right) dx} \int \limits _0^\infty {\exp \left( { - \frac{{\gamma _0^1}}{{{\alpha _1}{\rho _s}{\lambda _{{h_1}}}}}\left( {{\alpha _2}{\rho _s}y + {\rho _r}x + 1} \right) } \right) } {f_{{{\left| {{h_2}} \right| }^2}}}\left( y \right) dy\\ =&\frac{1}{{{\lambda _f}{\lambda _{{h_2}}}}}\exp \left( { - \frac{{\gamma _0^1}}{{{\alpha _1}{\rho _s}{\lambda _{{h_1}}}}}} \right) \int \limits _0^\infty {\exp \left( { - \left( {\frac{{\gamma _0^1{\rho _r}}}{{{\alpha _1}{\rho _s}{\lambda _{{h_1}}}}} + \frac{1}{{{\lambda _f}}}} \right) x} \right) dx} \\&\times \int \limits _0^\infty {\exp \left( { - \left( {\frac{{\gamma _0^1{\alpha _2}}}{{{\alpha _1}{\lambda _{{h_1}}}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) y} \right) } dy\\ =&\frac{1}{{{\lambda _f}{\lambda _{{h_2}}}}}\exp \left( { - \frac{{\gamma _0^1}}{{{\alpha _1}{\rho _s}{\lambda _{{h_1}}}}}} \right) {\left( {\frac{{\gamma _0^1{\rho _r}}}{{{\alpha _1}{\rho _s}{\lambda _{{h_1}}}}} + \frac{1}{{{\lambda _f}}}} \right) ^{ - 1}}{\left( {\frac{{\gamma _0^1{\alpha _2}}}{{{\alpha _1}{\lambda _{{h_1}}}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) ^{ - 1}} \end{aligned} \end{aligned}$$
(20)

It is noted that, we have following results

$$\begin{aligned} \int \limits _0^\infty {\exp \left( { - \left( {\frac{{\gamma _0^1{\rho _r}}}{{{\alpha _1}{\rho _s}{\lambda _{{h_1}}}}} + \frac{1}{{{\lambda _f}}}} \right) x} \right) dx} = {\left( {\frac{{\gamma _0^1{\rho _r}}}{{{\alpha _1}{\rho _s}{\lambda _{{h_1}}}}} + \frac{1}{{{\lambda _f}}}} \right) ^{ - 1}}, \end{aligned}$$
(21)
$$\begin{aligned} \int \limits _0^\infty {\exp \left( { - \left( {\frac{{\gamma _0^1{\alpha _2}}}{{{\alpha _1}{\lambda _{{h_1}}}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) y} \right) } dy = {\left( {\frac{{\gamma _0^1{\alpha _2}}}{{{\alpha _1}{\lambda _{{h_1}}}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) ^{ - 1}}, \end{aligned}$$
(22)
$$\begin{aligned} {f_{{{\left| {{h_2}} \right| }^2}}}\left( y \right) = \frac{1}{{{\lambda _{{h_2}}}}}\exp \left( { - \frac{y}{{{\lambda _{{h_2}}}}}} \right) , \end{aligned}$$
(23)
$$\begin{aligned} {f_{{{\left| f \right| }^2}}}\left( x \right) = \frac{1}{{{\lambda _f}}}\exp \left( { - \frac{x}{{{\lambda _f}}}} \right) . \end{aligned}$$
(24)

To further computation, we have

$$\begin{aligned} {\mathcal{O}_3} = \frac{1}{{{\lambda _f}{\lambda _{{h_2}}}}}\exp \left( { - \frac{{\gamma _0^1}}{{{\alpha _1}{\rho _s}{\lambda _{{h_1}}}}}} \right) {\left( {\frac{{\gamma _0^1{\rho _r}}}{{{\alpha _1}{\rho _s}{\lambda _{{h_1}}}}} + \frac{1}{{{\lambda _f}}}} \right) ^{ - 1}}{\left( {\frac{{\gamma _0^1{\alpha _2}}}{{{\alpha _1}{\lambda _{{h_1}}}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) ^{ - 1}} \end{aligned}$$
(25)

and

$$\begin{aligned} {\mathcal{O}_4} = 1 - {F_{{{\left| {{g_1}} \right| }^2}}}\left( {\frac{{\gamma _0^1}}{{\left( {{\alpha _3} - {\alpha _4}\gamma _0^1} \right) {\rho _r}}}} \right) = \exp \left( { - \frac{{\gamma _0^1}}{{\left( {{\alpha _3} - {\alpha _4}\gamma _0^1} \right) {\rho _r}{\lambda _{{g_1}}}}}} \right) \end{aligned}$$
(26)

1.2 Proof of Proposition 2

We have following equation as

$$\begin{aligned} \begin{aligned} {\mathcal{O}_1} =&\Pr \left( {\frac{{{\alpha _1}{\rho _s}{{\left| {{h_1}} \right| }^2}}}{{{\alpha _2}{\rho _s}{{\left| {{h_2}} \right| }^2} + {\rho _r}{{\left| f \right| }^2} + 1}} \ge \gamma _0^1,\frac{{{\alpha _2}{\rho _s}{{\left| {{h_2}} \right| }^2}}}{{{\alpha _1}{\rho _s}{{\left| {{k_1}} \right| }^2} + {\rho _r}{{\left| f \right| }^2} + 1}} \ge \gamma _0^2} \right) \\ =&\Pr \left( {{{\left| {{h_1}} \right| }^2} \ge \frac{{\gamma _0^1}}{{{\alpha _1}{\rho _s}}}\left( {{\alpha _2}{\rho _s}{{\left| {{h_2}} \right| }^2} + {\rho _r}{{\left| f \right| }^2} + 1} \right) ,{{\left| {{h_2}} \right| }^2} \ge \frac{{\gamma _0^2}}{{{\alpha _2}{\rho _s}}}\left( {{\alpha _1}{\rho _s}{{\left| {{k_1}} \right| }^2} + {\rho _r}{{\left| f \right| }^2} + 1} \right) } \right) \end{aligned} \end{aligned}$$
(27)

After placing the following variables \(x = {\left| f \right| ^2},y = {\left| {{h_2}} \right| ^2},z = {\left| {{k_1}} \right| ^2}\) and performing calculations, we have

$$\begin{aligned} \begin{aligned} {\mathcal{O}_1} =&\exp \left( { - \frac{{\gamma _0^1}}{{{\alpha _1}{\rho _s}{\lambda _{_{{h_1}}}}}}} \right) \int \limits _0^\infty {\exp \left( { - \frac{{{\rho _r}\gamma _0^1}}{{{\alpha _1}{\rho _s}{\lambda _{_{{h_1}}}}}}x} \right) {f_{{{\left| f \right| }^2}}}\left( x \right) } dx\\&\times \int \limits _{\frac{{\gamma _0^2}}{{{\alpha _2}{\rho _s}}}\left( {{\alpha _1}{\rho _s}z + {\rho _r}x + 1} \right) }^\infty {\exp \left( { - \frac{{{\alpha _2}\gamma _0^1}}{{{\alpha _1}{\lambda _{_{{h_1}}}}}}y} \right) {f_{{{\left| {{h_2}} \right| }^2}}}\left( y \right) dy} \int \limits _0^\infty {{f_{{{\left| {{k_1}} \right| }^2}}}\left( z \right) } dz\\ =&\frac{1}{{{\lambda _{{h_2}}}}}{\left( {\frac{{{\alpha _2}\gamma _0^1}}{{{\alpha _1}{\lambda _{_{{h_1}}}}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) ^{ - 1}}\exp \left( { - \frac{{\gamma _0^1}}{{{\alpha _1}{\rho _s}{\lambda _{_{{h_1}}}}}} - \frac{{\gamma _0^2}}{{{\alpha _2}{\rho _s}}}\left( {\frac{{{\alpha _2}\gamma _0^1}}{{{\alpha _1}{\lambda _{_{{h_1}}}}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) } \right) \\&\times \int \limits _0^\infty {\exp \left( { - \left( {\frac{{{\rho _r}\gamma _0^1}}{{{\alpha _1}{\rho _s}{\lambda _{_{{h_1}}}}}} + \frac{{{\rho _r}\gamma _0^2}}{{{\alpha _2}{\rho _s}}}\left( {\frac{{{\alpha _2}\gamma _0^1}}{{{\alpha _1}{\lambda _{_{{h_1}}}}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) } \right) x} \right) {f_{{{\left| f \right| }^2}}}\left( x \right) } dx\\&\times \int \limits _0^\infty {\exp \left( { - \frac{{{\alpha _1}\gamma _0^2}}{{{\alpha _2}}}\left( {\frac{{{\alpha _2}\gamma _0^1}}{{{\alpha _1}{\lambda _{_{{h_1}}}}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) z} \right) {f_{{{\left| {{k_1}} \right| }^2}}}\left( z \right) } dz\\ =&\frac{1}{{{\lambda _{{h_2}}}}}{\left( {\frac{{{\alpha _2}\gamma _0^1}}{{{\alpha _1}{\lambda _{_{{h_1}}}}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) ^{ - 1}}\exp \left( { - \frac{{\gamma _0^1}}{{{\alpha _1}{\rho _s}{\lambda _{_{{h_1}}}}}} - \frac{{\gamma _0^2}}{{{\alpha _2}{\rho _s}}}\left( {\frac{{{\alpha _2}\gamma _0^1}}{{{\alpha _1}{\lambda _{_{{h_1}}}}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) } \right) \\&\times \frac{1}{{{\lambda _f}}}{\left( {\frac{{{\rho _r}\gamma _0^1}}{{{\alpha _1}{\rho _s}{\lambda _{_{{h_1}}}}}} + \frac{{{\rho _r}\gamma _0^2}}{{{\alpha _2}{\rho _s}}}\left( {\frac{{{\alpha _2}\gamma _0^1}}{{{\alpha _1}{\lambda _{_{{h_1}}}}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) + \frac{1}{{{\lambda _f}}}} \right) ^{ - 1}}\\&\times \frac{1}{{{\lambda _{{k_1}}}}}{\left( {\frac{{{\alpha _1}\gamma _0^2}}{{{\alpha _2}}}\left( {\frac{{{\alpha _2}\gamma _0^1}}{{{\alpha _1}{\lambda _{_{{h_1}}}}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) + \frac{1}{{{\lambda _{{k_1}}}}}} \right) ^{ - 1}} \end{aligned} \end{aligned}$$
(28)

The following results can be given as

$$\begin{aligned} \begin{aligned}&\int \limits _{\frac{{\gamma _0^2}}{{{\alpha _2}{\rho _s}}}\left( {{\alpha _1}{\rho _s}z + {\rho _r}x + 1} \right) }^\infty {\exp \left( { - \frac{{{\alpha _2}\gamma _0^1}}{{{\alpha _1}{\lambda _{_{{h_1}}}}}}y} \right) {f_{{{\left| {{h_2}} \right| }^2}}}\left( y \right) dy} = \frac{1}{{{\lambda _{{h_2}}}}}{\left( {\frac{{{\alpha _2}\gamma _0^1}}{{{\alpha _1}{\lambda _{_{{h_1}}}}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) ^{ - 1}}\\&\quad \times \exp \left( { - \frac{{\gamma _0^2}}{{{\alpha _2}{\rho _s}}}\left( {\frac{{{\alpha _2}\gamma _0^1}}{{{\alpha _1}{\lambda _{_{{h_1}}}}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) } \right) \\&\quad \times \exp \left( { - \frac{{{\alpha _1}\gamma _0^2}}{{{\alpha _2}}}\left( {\frac{{{\alpha _2}\gamma _0^1}}{{{\alpha _1}{\lambda _{_{{h_1}}}}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) z} \right) \\&\quad \times \exp \left( { - \frac{{{\rho _r}\gamma _0^2}}{{{\alpha _2}{\rho _s}}}\left( {\frac{{{\alpha _2}\gamma _0^1}}{{{\alpha _1}{\lambda _{_{{h_1}}}}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) x} \right) , \end{aligned} \end{aligned}$$
(29)
$$\begin{aligned} \begin{array}{c} \int \limits _0^\infty {\exp \left( { - \left( {\frac{{{\rho _r}\gamma _0^1}}{{{\alpha _1}{\rho _s}{\lambda _{_{{h_1}}}}}} + \frac{{{\rho _r}\gamma _0^2}}{{{\alpha _2}{\rho _s}}}\left( {\frac{{{\alpha _2}\gamma _0^1}}{{{\alpha _1}{\lambda _{_{{h_1}}}}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) } \right) x} \right) {f_{{{\left| f \right| }^2}}}\left( x \right) } dx\\ = \frac{1}{{{\lambda _f}}}{\left( {\frac{{{\rho _r}\gamma _0^1}}{{{\alpha _1}{\rho _s}{\lambda _{_{{h_1}}}}}} + \frac{{{\rho _r}\gamma _0^2}}{{{\alpha _2}{\rho _s}}}\left( {\frac{{{\alpha _2}\gamma _0^1}}{{{\alpha _1}{\lambda _{_{{h_1}}}}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) + \frac{1}{{{\lambda _f}}}} \right) ^{ - 1}}, \end{array} \end{aligned}$$
(30)
$$\begin{aligned} \begin{array}{c} \int \limits _0^\infty {\exp \left( { - \frac{{{\alpha _1}\gamma _0^2}}{{{\alpha _2}}}\left( {\frac{{{\alpha _2}\gamma _0^1}}{{{\alpha _1}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) z} \right) {f_{{{\left| {{k_1}} \right| }^2}}}\left( z \right) } dz\\ = \frac{1}{{{\lambda _{{k_1}}}}}{\left( {\frac{{{\alpha _1}\gamma _0^2}}{{{\alpha _2}}}\left( {\frac{{{\alpha _2}\gamma _0^1}}{{{\alpha _1}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) + \frac{1}{{{\lambda _{{k_1}}}}}} \right) ^{ - 1}} \end{array} \end{aligned}$$
(31)

To further compute \({\mathcal{O}_2}\), we have

$$\begin{aligned} \begin{aligned} {\mathcal{O}_2} =&\Pr \left( {\frac{{{\alpha _3}{\rho _r}{{\left| {{g_2}} \right| }^2}}}{{{\alpha _4}{\rho _r}{{\left| {{g_2}} \right| }^2} + 1}} \ge \gamma _0^1,\frac{{{\alpha _4}{\rho _r}{{\left| {{g_2}} \right| }^2}}}{{{\alpha _3}{\rho _r}{{\left| {{k_2}} \right| }^2} + 1}} \ge \gamma _0^2} \right) \\ =&\Pr \left( {{{\left| {{g_2}} \right| }^2} \ge \frac{{\gamma _0^1}}{{\left( {{\alpha _3} - \gamma _0^1{\alpha _4}} \right) {\rho _r}}},{{\left| {{g_2}} \right| }^2} \ge \frac{{\gamma _0^2}}{{{\alpha _4}{\rho _r}}}\left( {{\alpha _3}{\rho _r}{{\left| {{k_2}} \right| }^2} + 1} \right) } \right) \\ =&\Pr \left( {{{\left| {{g_2}} \right| }^2} \ge \max \left( {\frac{{\gamma _0^1}}{{\left( {{\alpha _3} - \gamma _0^1{\alpha _4}} \right) {\rho _r}}},\frac{{\gamma _0^2}}{{{\alpha _4}{\rho _r}}}\left( {{\alpha _3}{\rho _r}{{\left| {{k_2}} \right| }^2} + 1} \right) } \right) } \right) \\ =&\Pr \left( {{{\left| {{g_2}} \right| }^2} \ge \frac{{\gamma _0^2}}{{{\alpha _4}{\rho _r}}}\left( {{\alpha _3}{\rho _r}{{\left| {{k_2}} \right| }^2} + 1} \right) ,{{\left| {{k_2}} \right| }^2}> \frac{1}{{{\alpha _3}{\rho _r}}}\left( {\frac{{{\alpha _4}\gamma _0^1}}{{\left( {{\upsilon _3} - \gamma _0^1{\alpha _4}} \right) \gamma _0^2}} - 1} \right) } \right) \\&+ \Pr \left( {{{\left| {{g_2}} \right| }^2} \ge \frac{{\gamma _0^1}}{{\left( {{\alpha _3} - \gamma _0^1{\alpha _4}} \right) {\rho _r}}},{{\left| {{k_2}} \right| }^2}< \frac{1}{{{\alpha _3}{\rho _r}}}\left( {\frac{{{\alpha _4}\gamma _0^1}}{{\left( {{\alpha _3} - \gamma _0^1{\alpha _4}} \right) \gamma _0^2}} - 1} \right) } \right) \\ =&\underbrace{\Pr \left( {{{\left| {{g_2}} \right| }^2} \ge \frac{{\gamma _0^2}}{{{\upsilon _4}{\rho _r}}}\left( {{\upsilon _3}{\rho _r}{{\left| {{k_2}} \right| }^2} + 1} \right) ,{{\left| {{k_2}} \right| }^2} > \max \left( {0,\frac{1}{{{\upsilon _3}{\rho _r}}}\left( {\frac{{{\upsilon _4}\gamma _0^1}}{{\left( {{\upsilon _3} - \gamma _0^1{\upsilon _4}} \right) \gamma _0^2}} - 1} \right) } \right) } \right) }_{ \buildrel \varDelta \over = {\varDelta _1}}\\&+ \underbrace{\Pr \left( {{{\left| {{g_2}} \right| }^2} \ge \frac{{\gamma _0^1}}{{\left( {{\upsilon _3} - \gamma _0^1{\upsilon _4}} \right) {\rho _r}}},{{\left| {{k_2}} \right| }^2} < \max \left( {0,\frac{1}{{{\upsilon _3}{\rho _r}}}\left( {\frac{{{\upsilon _4}\gamma _0^1}}{{\left( {{\upsilon _3} - \gamma _0^1{\upsilon _4}} \right) \gamma _0^2}} - 1} \right) } \right) } \right) }_{ \buildrel \varDelta \over = {\varDelta _2}} \end{aligned} \end{aligned}$$
(32)

If \({\left| {{k_2}} \right| ^2} > \frac{1}{{{\upsilon _3}{\rho _r}}}\left( {\frac{{{\upsilon _4}\gamma _0^1}}{{\left( {{\upsilon _3} - \gamma _0^1{\upsilon _4}} \right) \gamma _0^2}} - 1} \right) \) \( \Rightarrow \) \(\max \left( {\frac{{\gamma _0^1}}{{\left( {{\upsilon _3} - \gamma _0^1{\upsilon _4}} \right) {\rho _r}}},\frac{{\gamma _0^2}}{{{\upsilon _4}{\rho _r}}}\left( {{\upsilon _3}{\rho _r}{{\left| {{k_2}} \right| }^2} + 1} \right) } \right) = \frac{{\gamma _0^2}}{{{\upsilon _4}{\rho _r}}}\left( {{\upsilon _3}{\rho _r}{{\left| {{k_2}} \right| }^2} + 1} \right) \). Else \({\left| {{k_2}} \right| ^2} < \frac{1}{{{\upsilon _3}{\rho _r}}}\left( {\frac{{{\upsilon _4}\gamma _0^1}}{{\left( {{\upsilon _3} - \gamma _0^1{\upsilon _4}} \right) \gamma _0^2}} - 1} \right) \)

\(\Rightarrow \) \(\max \left( {\frac{{\gamma _0^1}}{{\left( {{\upsilon _3} - \gamma _0^1{\upsilon _4}} \right) {\rho _r}}},\frac{{\gamma _0^2}}{{{\upsilon _4}{\rho _r}}}\left( {{\upsilon _3}{\rho _r}{{\left| {{k_2}} \right| }^2} + 1} \right) } \right) = \frac{{\gamma _0^1}}{{\left( {{\upsilon _3} - \gamma _0^1{\upsilon _4}} \right) {\rho _r}}}\).

It worth noting that, some important results can be achieved as

$$\begin{aligned} \begin{aligned} {\varDelta _1} =&\Pr \left( {{{\left| {{g_2}} \right| }^2} \ge \frac{{\gamma _0^2}}{{{\alpha _4}{\rho _r}}}\left( {{\alpha _3}{\rho _r}{{\left| {{k_2}} \right| }^2} + 1} \right) ,{{\left| {{k_2}} \right| }^2} > \underbrace{\max \left( {0,\frac{1}{{{\alpha _3}{\rho _r}}}\left( {\frac{{{\alpha _4}\gamma _0^1}}{{\left( {{\alpha _3} - \gamma _0^1{\alpha _4}} \right) \gamma _0^2}} - 1} \right) } \right) }_{ \buildrel \varDelta \over = \Phi }} \right) \\ =&\int \limits _\Phi ^\infty {\left( {1 - {F_{{{\left| {{g_2}} \right| }^2}}}\left( {\frac{{\gamma _0^2}}{{{\alpha _4}{\rho _r}}}\left( {{\alpha _3}{\rho _r}x + 1} \right) } \right) } \right) {f_{{{\left| {{k_2}} \right| }^2}}}\left( x \right) dx} \\ =&\frac{1}{{{\lambda _{{k_2}}}}}\exp \left( { - \frac{{\gamma _0^2}}{{{\alpha _4}{\rho _r}{\lambda _{{g_2}}}}}} \right) \int \limits _\Phi ^\infty {\exp \left( { - \left( {\frac{{{\alpha _3}\gamma _0^2}}{{{\alpha _4}{\lambda _{{g_2}}}}} + \frac{1}{{{\lambda _{{k_2}}}}}} \right) x} \right) dx} \\ =&\frac{1}{{{\lambda _{{k_2}}}}}{\left( {\frac{{{\alpha _3}\gamma _0^2}}{{{\alpha _4}{\lambda _{{g_2}}}}} + \frac{1}{{{\lambda _{{k_2}}}}}} \right) ^{ - 1}}\exp \left( { - \frac{{\gamma _0^2}}{{{\alpha _4}{\rho _r}{\lambda _{{g_2}}}}} - \Phi \left( {\frac{{{\alpha _3}\gamma _0^2}}{{{\alpha _4}{\lambda _{{g_2}}}}} + \frac{1}{{{\lambda _{{k_2}}}}}} \right) } \right) \end{aligned} \end{aligned}$$
(33)

and

$$\begin{aligned} {\varDelta _2}&= \Pr \left( {{{\left| {{g_2}} \right| }^2} \ge \frac{{\gamma _0^1}}{{\left( {{\alpha _3} - \gamma _0^1{\alpha _4}} \right) {\rho _r}}},{{\left| {{k_2}} \right| }^2}< \max \left( {0,\frac{1}{{{\alpha _3}{\rho _r}}}\left( {\frac{{{\alpha _4}\gamma _0^1}}{{\left( {{\alpha _3} - \gamma _0^1{\alpha _4}} \right) \gamma _0^2}} - 1} \right) } \right) } \right) \nonumber \\&= \Pr \left( {{{\left| {{g_2}} \right| }^2} \ge \frac{{\gamma _0^1}}{{\left( {{\alpha _3} - \gamma _0^1{\alpha _4}} \right) {\rho _r}}}} \right) \Pr \left( {{{\left| {{k_2}} \right| }^2} < \max \left( {0,\frac{1}{{{\alpha _3}{\rho _r}}}\left( {\frac{{{\alpha _4}\gamma _0^1}}{{\left( {{\alpha _3} - \gamma _0^1{\alpha _4}} \right) \gamma _0^2}} - 1} \right) } \right) } \right) \nonumber \\&= \left( {1 - {F_{{{\left| {{g_2}} \right| }^2}}}\left( {\frac{{\gamma _0^1}}{{\left( {{\upsilon _3} - \gamma _0^1{\upsilon _4}} \right) {\rho _r}}}} \right) } \right) \left( {{F_{{{\left| {{k_2}} \right| }^2}}}\left( {\max \left( {0,\frac{1}{{{\alpha _3}{\rho _r}}}\left( {\frac{{{\alpha _4}\gamma _0^1}}{{\left( {{\alpha _3} - \gamma _0^1{\alpha _4}} \right) \gamma _0^2}} - 1} \right) } \right) } \right) } \right) \nonumber \\&= \exp \left( { - \frac{{\gamma _0^1}}{{\left( {{\upsilon _3} - \gamma _0^1{\upsilon _4}} \right) {\rho _r}{\lambda _{{g_2}}}}}} \right) \left( {1 - \exp \left( { - \frac{1}{{{\lambda _{{k_2}}}}}\max \left( {0,\frac{1}{{{\alpha _3}{\rho _r}}}\left( {\frac{{{\alpha _4}\gamma _0^1}}{{\left( {{\alpha _3} - \gamma _0^1{\alpha _4}} \right) \gamma _0^2}} - 1} \right) } \right) } \right) } \right) \end{aligned}$$
(34)

Substituting (33) and (34) into (32), we obtain final formula of

$$\begin{aligned} {\mathcal{O}_2}&= {\varDelta _1} + {\varDelta _2}\nonumber \\&= \frac{1}{{{\lambda _{{k_2}}}}}{\left( {\frac{{{\alpha _3}\gamma _0^2}}{{{\alpha _4}{\lambda _{{g_2}}}}} + \frac{1}{{{\lambda _{{k_2}}}}}} \right) ^{ - 1}}\exp \left( { - \frac{{\gamma _0^2}}{{{\alpha _4}{\rho _r}{\lambda _{{g_2}}}}} - \Phi \left( {\frac{{{\alpha _3}\gamma _0^2}}{{{\alpha _4}{\lambda _{{g_2}}}}} + \frac{1}{{{\lambda _{{k_2}}}}}} \right) } \right) \nonumber \\&+ \exp \left( { - \frac{{\gamma _0^1}}{{\left( {{\upsilon _3} - \gamma _0^1{\upsilon _4}} \right) {\rho _r}{\lambda _{{g_2}}}}}} \right) \nonumber \\&\quad \left( {1 - \exp \left( { - \frac{1}{{{\lambda _{{k_2}}}}}\max \left( {0,\frac{1}{{{\alpha _3}{\rho _r}}}\left( {\frac{{{\alpha _4}\gamma _0^1}}{{\left( {{\alpha _3} - \gamma _0^1{\alpha _4}} \right) \gamma _0^2}} - 1} \right) } \right) } \right) } \right) \end{aligned}$$
(35)

It completes Proposition 2.

1.3 Proof of Proposition 3

We have following equation as

$$\begin{aligned} \begin{aligned} {\zeta _1} =&\Pr \left( {\frac{{{\alpha _1}{\rho _s}{{\left| {{h_1}} \right| }^2}}}{{{\alpha _2}{\rho _s}{{\left| {{h_2}} \right| }^2} + {\rho _r}{{\left| f \right| }^2} + 1}} \ge \gamma _0^1,\frac{{{\alpha _2}{\rho _s}{{\left| {{h_2}} \right| }^2}}}{{{\rho _r}{{\left| f \right| }^2} + 1}} \ge \gamma _0^2} \right) \\ =&\Pr \left( {{{\left| {{h_1}} \right| }^2} \ge \frac{{\gamma _0^1}}{{{\alpha _1}{\rho _s}}}\left( {{\alpha _2}{\rho _s}{{\left| {{h_2}} \right| }^2} + {\rho _r}{{\left| f \right| }^2} + 1} \right) ,{{\left| {{h_2}} \right| }^2} \ge \frac{{\gamma _0^2}}{{{\alpha _2}{\rho _s}}}\left( {{\rho _r}{{\left| f \right| }^2} + 1} \right) } \right) \end{aligned} \end{aligned}$$
(36)

After placing the following variables \(x = {\left| f \right| ^2},y = {\left| {{h_2}} \right| ^2}\) and performing calculations, we have

$$\begin{aligned} \begin{aligned} {\zeta _1} =&\exp \left( { - \frac{{\gamma _0^1}}{{{\alpha _1}{\rho _s}{\lambda _{_{{h_1}}}}}}} \right) \int \limits _0^\infty {\exp \left( { - \frac{{{\rho _r}\gamma _0^1}}{{{\alpha _1}{\rho _s}{\lambda _{_{{h_1}}}}}}x} \right) {f_{{{\left| f \right| }^2}}}\left( x \right) } dx\\&\times \int \limits _{\frac{{\gamma _0^2}}{{{\alpha _2}{\rho _s}}}\left( {{\rho _r}x + 1} \right) }^\infty {\exp \left( { - \frac{{{\alpha _2}\gamma _0^1}}{{{\alpha _1}{\lambda _{_{{h_1}}}}}}y} \right) {f_{{{\left| {{h_2}} \right| }^2}}}\left( y \right) dy} \\ =&\frac{1}{{{\lambda _{{h_2}}}}}{\left( {\frac{{{\alpha _2}\gamma _0^1}}{{{\alpha _1}{\lambda _{_{{h_1}}}}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) ^{ - 1}}\exp \left( { - \frac{{\gamma _0^1}}{{{\alpha _1}{\rho _s}{\lambda _{_{{h_1}}}}}} - \frac{{\gamma _0^2}}{{{\alpha _2}{\rho _s}}}\left( {\frac{{{\alpha _2}\gamma _0^1}}{{{\alpha _1}{\lambda _{_{{h_1}}}}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) } \right) \\&\times \int \limits _0^\infty {\exp \left( { - \left( {\frac{{{\rho _r}\gamma _0^1}}{{{\alpha _1}{\rho _s}{\lambda _{_{{h_1}}}}}} + \frac{{{\rho _r}\gamma _0^2}}{{{\alpha _2}{\rho _s}}}\left( {\frac{{{\alpha _2}\gamma _0^1}}{{{\alpha _1}{\lambda _{_{{h_1}}}}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) } \right) x} \right) {f_{{{\left| f \right| }^2}}}\left( x \right) } dx\\ =&\frac{1}{{{\lambda _{{h_2}}}}}{\left( {\frac{{{\alpha _2}\gamma _0^1}}{{{\alpha _1}{\lambda _{_{{h_1}}}}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) ^{ - 1}}\exp \left( { - \frac{{\gamma _0^1}}{{{\alpha _1}{\rho _s}{\lambda _{_{{h_1}}}}}} - \frac{{\gamma _0^2}}{{{\alpha _2}{\rho _s}}}\left( {\frac{{{\alpha _2}\gamma _0^1}}{{{\alpha _1}{\lambda _{_{{h_1}}}}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) } \right) \\&\times \frac{1}{{{\lambda _f}}}{\left( {\frac{{{\rho _r}\gamma _0^1}}{{{\alpha _1}{\rho _s}{\lambda _{_{{h_1}}}}}} + \frac{{{\rho _r}\gamma _0^2}}{{{\alpha _2}{\rho _s}}}\left( {\frac{{{\alpha _2}\gamma _0^1}}{{{\alpha _1}{\lambda _{_{{h_1}}}}}} + \frac{1}{{{\lambda _{{h_2}}}}}} \right) + \frac{1}{{{\lambda _f}}}} \right) ^{ - 1}} \end{aligned} \end{aligned}$$
(37)

And to further examine \({\zeta _2}\), it can be given by

$$\begin{aligned} {\zeta _2} =&\Pr \left( {\frac{{{\alpha _3}{\rho _r}{{\left| {{g_2}} \right| }^2}}}{{{\alpha _4}{\rho _r}{{\left| {{g_2}} \right| }^2} + 1}} \ge \gamma _0^1,{\alpha _4}{\rho _r}{{\left| {{g_2}} \right| }^2} \ge \gamma _0^2} \right) \nonumber \\ =&\Pr \left( {{{\left| {{g_2}} \right| }^2} \ge \frac{{\gamma _0^1}}{{\left( {{\alpha _3} - \gamma _0^1{\alpha _4}} \right) {\rho _r}}},{{\left| {{g_2}} \right| }^2} \ge \frac{{\gamma _0^2}}{{{\alpha _4}{\rho _r}}}} \right) \nonumber \\ =&\Pr \left( {{{\left| {{g_2}} \right| }^2} \ge \max \left( {\frac{{\gamma _0^1}}{{\left( {{\alpha _3} - \gamma _0^1{\alpha _4}} \right) {\rho _r}}},\frac{{\gamma _0^2}}{{{\alpha _4}{\rho _r}}}} \right) } \right) \nonumber \\ =&\exp \left( { - \frac{1}{{{\lambda _{{g_2}}}}}\max \left( {\frac{{\gamma _0^1}}{{\left( {{\alpha _3} - \gamma _0^1{\alpha _4}} \right) {\rho _r}}},\frac{{\gamma _0^2}}{{{\alpha _4}{\rho _r}}}} \right) } \right) \nonumber \\ \end{aligned}$$
(38)

It completes Proposition 3.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thi Nguyen, TT., Do, DT., Khan, I., Mastorakis, G., Mavromoustakis, C.X. (2020). Power Domain Based Multiple Access for IoT Deployment: Two-Way Transmission Mode and Performance Analysis. In: Mastorakis, G., Mavromoustakis, C., Batalla, J., Pallis, E. (eds) Convergence of Artificial Intelligence and the Internet of Things. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-44907-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44907-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44906-3

  • Online ISBN: 978-3-030-44907-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics