Abstract
Lot-sizing problems are of high relevance for many manufacturing companies, as they have a major impact on setup and inventory costs as well as various organizational implications. We discuss a practical capacitated lot-sizing problem, which arises in injection molding processes for plastic blanks at a large automotive manufacturer in Germany. 25 different product types have to be manufactured on 7 distinct machines, whereas each product type may be assigned to at least two of these machines. An additional challenge is that the following production processes use different shift models. Hence, the stages have to be decoupled by a buffer store, which has a limited capacity due to individual storage containers for each product type. For a successful application of the presented planning approach several real-world requirements have to be integrated, such as linked lot sizes, rejects as well as a given number of workers and a limited buffer capacity. A mixed integer programming model is proposed and tested for several instances from practice using CPLEX. It is proven of being able to find very good solutions within in few minutes and can serve as helpful decision support. In addition to a considerable reduction of costs, the previously mostly manual planning process can be simplified significantly.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akbalik, A., Penz, B., Rapine, C.: Capacitated lot sizing problems with inventory bounds. Ann. Oper. Res. 229(1), 1–18 (2015)
Billington, P.J., McClain, J.O., Thomas, L.J.: Mathematical programming approaches to capacity-constrained MRP systems: Review, formulation and problem reduction. Manag. Sci. 29(10), 1126–1141 (1983)
Copil, K., Wörbelauer, M., Meyr, H., Tempelmeier, H.: Simultaneous lotsizing and scheduling problems: a classification and review of models. OR Spectr. 39(1), 1–64 (2017)
Diaby, M., Bahl, H.C., Karwan, M.H., Zionts, S.: A lagrangean relaxation approach for very-large-scale capacitated lot-sizing. Manag. Sci. 38(9), 1329–1340 (1992)
Karagul, H.F., Warsing Jr., D.P., Hodgson, T.J., Kapadia, M.S., Uzsoy, R.: A comparison of mixed integer programming formulations of the capacitated lot-sizing problem. Int. J. Prod. Res. 56(23), 7064–7084 (2018)
Quadt, D., Kuhn, H.: Capacitated lot-sizing with extensions: a review. 4OR 6(1), 61–83 (2008)
Toscano, A., Ferreira, D., Morabito, R.: A decomposition heuristic to solve the two-stage lot sizing and scheduling problem with temporal cleaning. Flex. Serv. Manuf. J. 31(1), 142–173 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Neufeld, J.S., Schmidt, F.J., Schultz, T., Buscher, U. (2020). Capacitated Lot Sizing for Plastic Blanks in Automotive Manufacturing Integrating Real-World Requirements. In: Neufeld, J.S., Buscher, U., Lasch, R., Möst, D., Schönberger, J. (eds) Operations Research Proceedings 2019. Operations Research Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-030-48439-2_65
Download citation
DOI: https://doi.org/10.1007/978-3-030-48439-2_65
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-48438-5
Online ISBN: 978-3-030-48439-2
eBook Packages: Business and ManagementBusiness and Management (R0)